How to find the distance between two points along a curve?

19 次查看(过去 30 天)
I have a set of generated X and Y axis data, which have given a curved line. Now, I need to find the distance between two specified points along the curve, not the straight shortest distance between two points but along the curve path. Can someone help me finding this numerically?
  7 个评论
Mathieu NOE
Mathieu NOE 2024-4-26
dr represents only the increment of arc length (quite constant in this example)
now you need to do a sum of them - see my answer
Sathiya
Sathiya 2024-4-29
@Sam Chak, dr here gives the shortest distance (displacement) between two points. For eg. lets say, I need the distance along the curve from 1st point and 50th point, this formula finds the straight distance between data points, not along the curve.

请先登录,再进行评论。

回答(2 个)

Mathieu NOE
Mathieu NOE 2024-4-26
编辑:Mathieu NOE 2024-4-26
hello
try this
th = linspace(-pi/2, pi/2, 100);
R = 200;
X = R * sin(th) ; % X-coordinates
Y = R * cos(th) ; % Y-coordinates
dx = diff(X);
dy = diff(Y);
ds = sqrt(dx.^2+dy.^2); % increment of arc length
s = cumsum(ds); % integration => total arc length
s = [0 s]; % add first point : arc length = 0
% compute arc length between two points (defined by index position)
k1 = 25;
k2 = 59;
d = s(k2) - s(k1)
d = 215.7771
plot(X, Y, 'r.-',X(k1:k2), Y(k1:k2), 'db');
axis square
  4 个评论
Torsten
Torsten 2024-4-27
If you have an explicit equation of your curve, you can use the usual formula for arclength:
R = 200;
fun = @(t)sqrt((R*cos(t)).^2+(R*(-sin(t))).^2)
fun = function_handle with value:
@(t)sqrt((R*cos(t)).^2+(R*(-sin(t))).^2)
length_of_curve = integral(fun,-pi/2,pi/2)
length_of_curve = 628.3185
2*pi*R/2
ans = 628.3185

请先登录,再进行评论。


Walter Roberson
Walter Roberson 2024-4-27

类别

Help CenterFile Exchange 中查找有关 Interpolation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by