Mass spring damper system problem

7 次查看(过去 30 天)
Hello, I am designing the mass spring damper system in the image. I am creating this code for the design of a ship crane. In my road equation, there is an increase of approximately 20 meters, and the spring k_c is stretched by 20 meters. I just want the spring to follow the road, but the spring follows the road like an arrow, which is very high like 2000N/mm². Stress occurs. I think there is a mistake in my input equation, but I couldn't figure it out completely. I would be very happy if you could help me
The image of the system is also attached.
Matlab code:
% System parameters
M_c = 917; % Mass of the crane boom (kg)
M_s = 87; % Mass of the shock absorber (kg)
M_WL = 4075; % Mass of the working load (kg)
k_c = 554376; % Spring constant of the crane + crane hook ropes (N/m)
k_s = 24162; % Spring constant of the shock absorber system (N/m)
k_R = 9090572; % Spring constant of the lifting beam and lower rope (N/m)
c_s = 5800; % Damping constant of the shock absorber system (Ns/m)
A = 1.5; % Amplitude of input signal (m)
omega = 1; % Angular frequency of input signal (rad/s)
V_H1 = 0.69; % Linear term coefficient for first interval (m/s)
V_H2 = 0; % Linear term coefficient for second interval (m/s)
V_H3 = -0.1; % Linear term coefficient for third interval (m/s)
d_c = 0.026; % Diameter of spring kc (m)
d_s = 0.03; % Diameter of spring ks (m)
d_R = 0.0226; % Diameter of spring kR (m)
% Combined time vector with smaller sampling period
t = 0:0.01:45; % From 0 to 45 seconds with 0.01s sampling period
% Input signal (m)
u = zeros(size(t));
u(t <= 25) = A * sin(omega * t(t <= 25)) + V_H1 * t(t <= 25);
u(t > 25 & t <= 35) = A * sin(omega * t(t > 25 & t <= 35)) + V_H1 * 25 + V_H2 * (t(t > 25 & t <= 35) - 25);
u(t > 35) = A * sin(omega * t(t > 35)) + V_H1 * 25 + V_H3 * (t(t > 35) - 35);
% State-space matrix
A_matrix = [0 1 0 0 0 0;
-k_c/M_c -c_s/M_c k_s/M_c c_s/M_c 0 0;
0 0 0 1 0 0;
k_s/M_s c_s/M_s -(k_s+k_R)/M_s -c_s/M_s k_R/M_s 0;
0 0 0 0 0 1;
0 0 k_R/M_WL 0 -k_R/M_WL 0];
B_matrix = [0;
k_c/M_c;
0;
0;
0;
0];
C_matrix = [1 0 0 0 0 0;
0 0 1 0 0 0;
0 0 0 0 1 0];
D_matrix = [0;
0;
0];
% Create state-space model
sys = ss(A_matrix, B_matrix, C_matrix, D_matrix);
% Simulate system response
[y, t, x] = lsim(sys, u, t);
Warning: The input signal is undersampled. Use a sampling period smaller than 3.9e-03.
% Calculate spring extensions (m)
delta_kc = u'- y(:,1); % Extension of spring kc
delta_ks = y(:,1) - y(:,2); % Extension of spring ks
delta_kR = y(:,2) - y(:,3); % Extension of spring kR
% Convert spring extensions to meters (m)
delta_kc_m = delta_kc; % Assuming input signal u is in meters
delta_ks_m = delta_ks; % Assuming displacements are in meters
delta_kR_m = delta_kR; % Assuming displacements are in meters
% Calculate spring stresses (N/m²)
A_c = pi * (d_c/2)^2; % Cross-sectional area of spring kc (m²)
A_s = pi * (d_s/2)^2; % Cross-sectional area of spring ks (m²)
A_R = pi * (d_R/2)^2; % Cross-sectional area of spring kR (m²)
F_kc = k_c * delta_kc_m; % Force in spring kc (N)
F_ks = k_s * delta_ks_m; % Force in spring ks (N)
F_kR = k_R * delta_kR_m; % Force in spring kR (N)
sigma_kc = F_kc / A_c; % Stress in spring kc (N/m²)
sigma_ks = F_ks / A_s; % Stress in spring ks (N/m²)
sigma_kR = F_kR / A_R; % Stress in spring kR (N/m²)
% Convert stress to N/mm²
sigma_kc_mm2 = sigma_kc * 1e-6;
sigma_ks_mm2 = sigma_ks * 1e-6;
sigma_kR_mm2 = sigma_kR * 1e-6;
% Plot input signal and outputs
figure;
subplot(5,1,1);
plot(t, u);
title('Input Signal u');
xlabel('Time (s)');
ylabel('u (m)');
subplot(5,1,2);
plot(t, y(:,1));
title('Output y1');
xlabel('Time (s)');
ylabel('y1 (m)');
subplot(5,1,3);
plot(t, y(:,2));
title('Output y2');
xlabel('Time (s)');
ylabel('y2 (m)');
subplot(5,1,4);
plot(t, y(:,3));
title('Output y3');
xlabel('Time (s)');
ylabel('y3 (m)');
% Plot spring stresses in separate figures
subplot(5,1,5);
hold on;
plot(t, sigma_kc_mm2, 'r');
plot(t, sigma_ks_mm2, 'g');
plot(t, sigma_kR_mm2, 'b');
title('Stress in Springs');
xlabel('Time (s)');
ylabel('Stress (N/mm²)');
legend('Stress \sigma_{kc}', 'Stress \sigma_{ks}', 'Stress \sigma_{kR}');
grid on;
% Animation
figure;
% Define positions of masses and springs
y1_base = 2; % Base position of mass 1 (m)
y2_base = 1; % Base position of mass 2 (m)
y3_base = 0; % Base position of mass 3 (m)
% Plot settings
axis([-0.5 1.5 -1 30]);
hold on;
% Initial positions of masses
h_m1 = rectangle('Position',[0.4 y1_base + y(1,1) 0.2 0.2], 'Curvature', [0.1 0.1], 'FaceColor', 'blue');
h_m2 = rectangle('Position',[0.4 y2_base + y(1,2) 0.2 0.2], 'Curvature', [0.1 0.1], 'FaceColor', 'green');
h_m3 = rectangle('Position',[0.4 y3_base + y(1,3) 0.2 0.2], 'Curvature', [0.1 0.1], 'FaceColor', 'red');
% Labels for masses
text(0.65, y1_base + y(1,1) + 0.1, 'M_c', 'FontSize', 12, 'Color', 'blue');
text(0.65, y2_base + y(1,2) + 0.1, 'M_s', 'FontSize', 12, 'Color', 'green');
text(0.65, y3_base + y(1,3) + 0.1, 'M_{WL}', 'FontSize', 12, 'Color', 'red');
% Initial positions of springs
h_spring1 = plot([0.5 0.5], [3 y1_base + y(1,1) + 0.2], 'k', 'LineWidth', 2);
h_spring2 = plot([0.5 0.5], [y1_base + y(1,1) y2_base + y(1,2) + 0.2], 'k', 'LineWidth', 2);
h_spring3 = plot([0.5 0.5], [y2_base + y(1,2) y3_base + y(1,3) + 0.2], 'k', 'LineWidth', 2);
% Labels for springs and dampers
text(0.3, 2.5, 'k_c', 'FontSize', 12, 'Color', 'black');
text(0.3, 1.5, 'k_s', 'FontSize', 12, 'Color', 'black');
text(0.3, 0.5, 'k_R', 'FontSize', 12, 'Color', 'black');
text(0.7, y1_base + (y2_base - y1_base) / 2 + y(1,1) / 2 + y(1,2) / 2, 'c_s', 'FontSize', 12, 'Color', 'black');
% Initial position of the damper
h_damper = plot([0.45 0.55], [y1_base + (y2_base - y1_base) / 2 + y(1,1) / 2 + y(1,2) / 2 y1_base + (y2_base - y1_base) / 2 + y(1,1) / 2 + y(1,2) / 2], 'k', 'LineWidth', 6);
% Animation loop
for i = 1:length(t)
% Update positions of masses
if isvalid(h_m1)
set(h_m1, 'Position', [0.4 y1_base + y(i,1) 0.2 0.2]);
end
if isvalid(h_m2)
set(h_m2, 'Position', [0.4 y2_base + y(i,2) 0.2 0.2]);
end
if isvalid(h_m3)
set(h_m3, 'Position', [0.4 y3_base + y(i,3) 0.2 0.2]);
end
% Update positions of springs
if isvalid(h_spring1)
set(h_spring1, 'YData', [3 y1_base + y(i,1) + 0.2]);
end
if isvalid(h_spring2)
set(h_spring2, 'YData', [y1_base + y(i,1) y2_base + y(i,2) + 0.2]);
end
if isvalid(h_spring3)
set(h_spring3, 'YData', [y2_base + y(i,2) y3_base + y(i,3) + 0.2]);
end
% Update position of the damper
if isvalid(h_damper)
set(h_damper, 'YData', [y1_base + (y2_base - y1_base) / 2 + y(i,1) / 2 + y(i,2) / 2 y1_base + (y2_base - y1_base) / 2 + y(i,1) / 2 + y(i,2) / 2]);
end
% Pause to create animation effect
pause(0.01);
end
hold off;
  3 个评论
OnurErdogan Erdogan
移动:Sam Chak 2024-6-21
Hello, thank you very much for your quick and valuable feedback.
I made the improvements you mentioned.
Could you have an opinion on the subject below?
The lower end of the k_c spring (the position where the u input enters) remains stable. And then, as the spring k_c stretches up to 20 meters, very high tensions occur. I expected that this end of the arc would follow the road data.
You can see lates version of my data
% System parameters
M_c = 917; % Mass of the crane boom (kg)
M_s = 87; % Mass of the shock absorber (kg)
M_WL = 4075; % Mass of the working load (kg)
k_c = 554376; % Spring constant of the crane + crane hook ropes (N/m)
k_s = 24162; % Spring constant of the shock absorber system (N/m)
k_R = 9090572; % Spring constant of the lifting beam and lower rope (N/m)
c_s = 5800; % Damping constant of the shock absorber system (Ns/m)
A = 1.5; % Amplitude of input signal (m)
omega = 1; % Angular frequency of input signal (rad/s)
V_H1 = 0.69; % Linear term coefficient for first interval (m/s)
V_H2 = 0; % Linear term coefficient for second interval (m/s)
V_H3 = -0.1; % Linear term coefficient for third interval (m/s)
d_c = 0.026; % Diameter of spring kc (m)
d_s = 0.03; % Diameter of spring ks (m)
d_R = 0.0226; % Diameter of spring kR (m)
% Combined time vector with smaller sampling period
t = 0:0.003:63; % From 0 to 63 seconds with 0.003s sampling period
% Input signal (m)
u = zeros(size(t));
u(t <= 25) = A * sin(omega * t(t <= 25)) + V_H1 * t(t <= 25);
u(t > 25 & t <= 35) = A * sin(omega * t(t > 25 & t <= 35)) + V_H1 * 25 + V_H2 * (t(t > 25 & t <= 35) - 25);
u(t > 35) = A * sin(omega * t(t > 35)) + V_H1 * 25 + V_H3 * (t(t > 35) - 35);
% Plot input signal
figure;
plot(t, u);
title('Input Signal, u(t)');
xlabel('Time (s)');
ylabel('u (m)');
grid on;
xticks(0:7:63);
xlim([0 63]);
% State-space matrix
A_matrix = [0 1 0 0 0 0;
-k_c/M_c -c_s/M_c k_s/M_c c_s/M_c 0 0;
0 0 0 1 0 0;
k_s/M_s c_s/M_s -(k_s+k_R)/M_s -c_s/M_s k_R/M_s 0;
0 0 0 0 0 1;
0 0 k_R/M_WL 0 -k_R/M_WL 0];
B_matrix = [0;
k_c/M_c;
0;
0;
0;
0];
C_matrix = [1 0 0 0 0 0;
0 0 1 0 0 0;
0 0 0 0 1 0];
D_matrix = [0;
0;
0];
% Create state-space model
sys = ss(A_matrix, B_matrix, C_matrix, D_matrix);
% Simulate system response
[y, t, x] = lsim(sys, u, t);
% Calculate spring extensions (m)
delta_kc = u' - y(:,1); % Extension of spring kc
delta_ks = y(:,1) - y(:,2); % Extension of spring ks
delta_kR = y(:,2) - y(:,3); % Extension of spring kR
% Convert spring extensions to meters (m)
delta_kc_m = delta_kc; % Assuming input signal u is in meters
delta_ks_m = delta_ks; % Assuming displacements are in meters
delta_kR_m = delta_kR; % Assuming displacements are in meters
% Calculate spring stresses (N/m²)
A_c = pi * (d_c/2)^2; % Cross-sectional area of spring kc (m²)
A_s = pi * (d_s/2)^2; % Cross-sectional area of spring ks (m²)
A_R = pi * (d_R/2)^2; % Cross-sectional area of spring kR (m²)
F_kc = k_c * delta_kc_m; % Force in spring kc (N)
F_ks = k_s * delta_ks_m; % Force in spring ks (N)
F_kR = k_R * delta_kR_m; % Force in spring kR (N)
sigma_kc = F_kc / A_c; % Stress in spring kc (N/m²)
sigma_ks = F_ks / A_s; % Stress in spring ks (N/m²)
sigma_kR = F_kR / A_R; % Stress in spring kR (N/m²)
% Convert stress to N/mm²
sigma_kc_mm2 = sigma_kc * 1e-6;
sigma_ks_mm2 = sigma_ks * 1e-6;
sigma_kR_mm2 = sigma_kR * 1e-6;
% Plot input signal and outputs
figure;
subplot(5,1,1);
plot(t, u);
title('Input Signal u');
xlabel('Time (s)');
ylabel('u (m)');
subplot(5,1,2);
plot(t, y(:,1));
title('Output y1');
xlabel('Time (s)');
ylabel('y1 (m)');
subplot(5,1,3);
plot(t, y(:,2));
title('Output y2');
xlabel('Time (s)');
ylabel('y2 (m)');
subplot(5,1,4);
plot(t, y(:,3));
title('Output y3');
xlabel('Time (s)');
ylabel('y3 (m)');
% Plot spring stresses in separate figures
subplot(5,1,5);
hold on;
plot(t, sigma_kc_mm2, 'r');
plot(t, sigma_ks_mm2, 'g');
plot(t, sigma_kR_mm2, 'b');
title('Stress in Springs');
xlabel('Time (s)');
ylabel('Stress (N/mm²)');
legend('Stress \sigma_{kc}', 'Stress \sigma_{ks}', 'Stress \sigma_{kR}');
grid on;
% Check stability of the system
is_stable = isstable(sys);
disp(['System is stable: ', num2str(is_stable)]);
eigenvalues = eig(A_matrix);
disp('Eigenvalues of A_matrix:');
disp(eigenvalues);
% Animation
figure;
% Define positions of masses and springs
y1_base = 2; % Base position of mass 1 (m)
y2_base = 1; % Base position of mass 2 (m)
y3_base = 0; % Base position of mass 3 (m)
% Plot settings
axis([-0.5 1.5 -1 30]);
hold on;
% Initial positions of masses
h_m1 = rectangle('Position',[0.4 y1_base + y(1,1) 0.2 0.2], 'Curvature', [0.1 0.1], 'FaceColor', 'blue');
h_m2 = rectangle('Position',[0.4 y2_base + y(1,2) 0.2 0.2], 'Curvature', [0.1 0.1], 'FaceColor', 'green');
h_m3 = rectangle('Position',[0.4 y3_base + y(1,3) 0.2 0.2], 'Curvature', [0.1 0.1], 'FaceColor', 'red');
% Labels for masses
text(0.65, y1_base + y(1,1) + 0.1, 'M_c', 'FontSize', 12, 'Color', 'blue');
text(0.65, y2_base + y(1,2) + 0.1, 'M_s', 'FontSize', 12, 'Color', 'green');
text(0.65, y3_base + y(1,3) + 0.1, 'M_{WL}', 'FontSize', 12, 'Color', 'red');
% Initial positions of springs
h_spring1 = plot([0.5 0.5], [3 y1_base + y(1,1) + 0.2], 'r', 'LineWidth', 2);
h_spring2 = plot([0.5 0.5], [y1_base + y(1,1) y2_base + y(1,2) + 0.2], 'g', 'LineWidth', 2);
h_spring3 = plot([0.5 0.5], [y2_base + y(1,2) y3_base + y(1,3) + 0.2], 'b', 'LineWidth', 2);
% Labels for springs and dampers
text(0.3, 2.5, 'k_c', 'FontSize', 12, 'Color', 'red');
text(0.3, 1.5, 'k_s', 'FontSize', 12, 'Color', 'green');
text(0.3, 0.5, 'k_R', 'FontSize', 12, 'Color', 'blue');
text(0.7, y1_base + (y2_base - y1_base) / 2 + y(1,1) / 2 + y(1,2) / 2, 'c_s', 'FontSize', 12, 'Color', 'black');
% Initial position of the damper
h_damper = plot([0.45 0.55], [y1_base + (y2_base - y1_base) / 2 + y(1,1) / 2 + y(1,2) / 2 y1_base + (y2_base - y1_base) / 2 + y(1,1) / 2 + y(1,2) / 2], 'k', 'LineWidth', 6);
% Animation loop
for i = 1:length(t)
% Update positions of masses
if isvalid(h_m1)
set(h_m1, 'Position', [0.4 y1_base + y(i,1) 0.2 0.2]);
end
if isvalid(h_m2)
set(h_m2, 'Position', [0.4 y2_base + y(i,2) 0.2 0.2]);
end
if isvalid(h_m3)
set(h_m3, 'Position', [0.4 y3_base + y(i,3) 0.2 0.2]);
end
% Update positions of springs
if isvalid(h_spring1)
set(h_spring1, 'YData', [3 y1_base + y(i,1) + 0.2]);
end
if isvalid(h_spring2)
set(h_spring2, 'YData', [y1_base + y(i,1) y2_base + y(i,2) + 0.2]);
end
if isvalid(h_spring3)
set(h_spring3, 'YData', [y2_base + y(i,2) y3_base + y(i,3) + 0.2]);
end
% Update position of the damper
if isvalid(h_damper)
set(h_damper, 'YData', [y1_base + (y2_base - y1_base) / 2 + y(i,1) / 2 + y(i,2) / 2 y1_base + (y2_base - y1_base) / 2 + y(i,1) / 2 + y(i,2) / 2]);
end
% Pause to create animation effect
pause(0.01);
end
hold off;
Sam Chak
Sam Chak 2024-6-21
I didn't suggest any improvements because I'm not an expert in springs. I simply reminded you to verify if the input signal was plotted correctly as intended. However, I don't understand why you strongly assert that the stress of the spring (kc) should follow the road profile. Perhaps what you plotted previously is correct.

请先登录,再进行评论。

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Aerospace Applications 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by