Hi Kenny,
Sorry to hear that you are having difficulties.
You mentioned, At the moment, I am just doing some testing, where it just looks like (or appears like) I can't turn off the IGBT transistors, no matter what gate 'voltage' I apply to their gates.I have included an example (attached). When I 'run' my example simulink project, the voltage measurement scope will show zero volt - no matter what value of 'voltage' that I apply to the gate. In the project setup, I have arbitrary set the gate voltages to -500 (negative 500) volt. I can get a 500 volt measurement to show on the scope only if I remove one of the IGBT blocks (or remove both IGBT blocks).In my screenshot - I have added some comments to let everyone know the general details of the screenshot. I'm just attempting to find out the reason for the voltage measurement being zero volt, regardless of the applied gate voltage. I have found that the voltage measurement becomes 500V when one or both IGBT are removed.
The most probable cause of this issue is a misconfiguration or a conflict within the IGBT blocks themselves. It seems that the IGBT blocks are not responding correctly to the gate voltage changes, leading to a constant zero voltage measurement.To address this issue, you can try the following steps:
Check Circuit Connections: Ensure that the connections between the IGBT blocks and ports 3 and 4 are correct and there are no short circuits.
Check IGBT Block Parameters: Verify the parameters of the IGBT blocks in the Simulink project. Ensure that the gate voltage settings are correctly configured.
Simulation Settings: Review the simulation settings to ensure that there are no constraints or limitations that might be preventing the IGBT transistors from turning off.
Gate Voltage Application: Double-check the method used to apply gate voltages to the IGBT transistors. Ensure that the values are being correctly passed and interpreted by the simulation.
Isolate Components: Remove any other components connected to ports 3 and 4 to isolate the measurement setup. This will help identify if any external factors are influencing the voltage readings.
Inspect Wiring: Examine the wiring for any signs of damage, wear, or incorrect routing. Faulty wiring can introduce interference or short circuits that affect voltage measurements.
Simulation Debugging: Use debugging tools within Simulink to track the behavior of the IGBT blocks during simulation. This can help identify any anomalies or unexpected behavior.
Regarding to query#2, Also - related - but not directly to my main question. I notice that the gate of these IGBT blocks can be connected to a 'constant' block. But the gates of these IGBT blocks don't seem to be able to be connected to signal lines. For example, when I try to connect the gate of the IGBT to the lines connected to port #3 or port #4 etc, I find that the line connection cannot be made (ie. a black coloured line does not form). Could someone let me know as well if it is actually possible to connect the gate of these IGBT blocks to the usual signal lines?
The root cause of this problem lies in the configuration of the IGBT block in Matlab Simulink. The gate of an IGBT block is typically connected to a 'constant' block for static input values. However, attempting to connect it directly to signal lines from specific ports results in connection failure.
To address this issue and enable the connection of the gate of an IGBT block to signal lines in Matlab Simulink, you can use a workaround by introducing a Signal Builder block. The Signal Builder block allows you to create custom signal waveforms that can be connected to the gate of the IGBT block.Here is an example code snippet demonstrating how to connect the gate of an IGBT block to a Signal Builder block in Matlab Simulink:
% Create a Signal Builder block
signal_builder_block = add_block('built-in/Signal Builder', 'YourModel/Signal Builder');
% Connect the Signal Builder block to the gate of the IGBT block
add_line('YourModel', 'Signal Builder/1', 'IGBT_Block/G');
% Configure the signal waveform in the Signal Builder block as needed
By using the Signal Builder block as an intermediary, you can establish a connection between the gate of the IGBT block and signal lines from specific ports in Matlab Simulink.
By implementing these solutions and preventive measures, you can effectively address the connection issue related to IGBT blocks in Matlab Simulink and enhance the functionality of your simulation models.