% first, I construct a table similar to yours
N = 152709;
MeasID = cellstr(char(64+randi(26,N,4)));
Time = datetime(randi(30,N,6));
C = num2cell(rand(N,12),1);
tData = table(MeasID,Time,C{:})
tData = 152709x14 table
MeasID Time Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 Var12 Var13 Var14
________ ____________________ ________ _______ _________ _______ ________ ________ _______ _______ _______ _________ _________ ________
{'BAIX'} 14-Oct-0016 15:04:08 0.74662 0.66584 0.97243 0.87197 0.16557 0.47469 0.2506 0.60395 0.86371 0.39017 0.17175 0.61027
{'KQVE'} 11-Mar-0013 23:01:14 0.89935 0.57533 0.97518 0.15691 0.81941 0.024631 0.28559 0.67214 0.9678 0.10555 0.23931 0.75911
{'RTDP'} 28-Jun-0004 01:03:30 0.68013 0.83434 0.19336 0.39673 0.24662 0.66457 0.03651 0.77372 0.96092 0.9078 0.1652 0.45785
{'EFAT'} 20-Mar-0014 02:26:13 0.053861 0.5456 0.27471 0.38658 0.71067 0.52239 0.88472 0.69064 0.4962 0.68826 0.27238 0.66459
{'GYEY'} 24-Sep-0017 04:13:15 0.07359 0.74494 0.63175 0.76147 0.32292 0.081403 0.45976 0.33457 0.97788 0.36092 0.6186 0.93396
{'BTAL'} 11-Nov-0023 16:26:29 0.87689 0.78009 0.036542 0.78547 0.63962 0.87256 0.94112 0.98786 0.1229 0.80758 0.72292 0.15229
{'OBIW'} 17-Sep-0018 17:20:20 0.65785 0.75491 0.4657 0.62428 0.48063 0.82777 0.5978 0.52455 0.37039 0.0096658 0.88045 0.43789
{'YQDL'} 25-Apr-0006 09:15:15 0.97658 0.85495 0.079595 0.2679 0.61404 0.23152 0.61481 0.17822 0.81922 0.65674 0.81724 0.11674
{'MHVL'} 19-Jul-0022 23:13:20 0.032466 0.38461 0.20308 0.89468 0.10013 0.49899 0.91968 0.45019 0.32341 0.30873 0.15687 0.7115
{'ARYA'} 01-Mar-0023 19:11:10 0.17789 0.91077 0.30519 0.52604 0.095028 0.36208 0.5468 0.75843 0.33732 0.37849 0.62022 0.16637
{'IOLX'} 27-Feb-0030 15:12:06 0.41864 0.95644 0.13891 0.90773 0.014836 0.90455 0.65606 0.63802 0.17448 0.6043 0.63695 0.85284
{'KHJC'} 27-Dec-0009 16:01:19 0.63461 0.27975 0.88259 0.85227 0.46034 0.96396 0.32063 0.88355 0.39404 0.042222 0.70572 0.91728
{'TTTW'} 01-Apr-0024 19:20:08 0.96205 0.88056 0.0078747 0.58999 0.70797 0.12374 0.30285 0.22808 0.73668 0.76896 0.0025572 0.093245
{'COOO'} 05-Oct-0001 14:19:10 0.33551 0.87829 0.22246 0.64423 0.59508 0.9902 0.93756 0.99927 0.32911 0.1336 0.59499 0.74522
{'SFNO'} 04-Jul-0022 21:03:26 0.29299 0.54507 0.78344 0.95124 0.29257 0.72571 0.13398 0.41114 0.74129 0.9658 0.98474 0.31675
{'ORFM'} 06-Jun-0009 22:02:08 0.51373 0.65547 0.099982 0.92044 0.6864 0.11025 0.18933 0.47621 0.93311 0.76635 0.42722 0.073502
% second, use grpstats to calculate the mean of each group, with grouping
% done according to indices, over all the numeric and datetime table variables
indices = repelem(1:ceil(height(tData)/10), 10, 1);
indices = indices(1:height(tData));
tData.group_idx = indices(:);
vars = tData.Properties.VariableNames;
vars(ismember(vars,{'MeasID','group_idx'})) = [];
tDataReduced = grpstats(tData,'group_idx','mean','DataVars',vars)
tDataReduced = 15271x15 table
group_idx GroupCount mean_Time mean_Var3 mean_Var4 mean_Var5 mean_Var6 mean_Var7 mean_Var8 mean_Var9 mean_Var10 mean_Var11 mean_Var12 mean_Var13 mean_Var14
_________ __________ ____________________ _________ _________ _________ _________ _________ _________ _________ __________ __________ __________ __________ __________
1 1 10 07-Feb-0016 05:55:29 0.51752 0.70514 0.41375 0.5672 0.41946 0.45606 0.55374 0.59743 0.62398 0.46139 0.46649 0.50105
2 2 10 13-Feb-0015 18:09:59 0.63774 0.70607 0.3648 0.77554 0.34877 0.55199 0.49512 0.64596 0.47208 0.52363 0.54743 0.42753
3 3 10 11-May-0013 06:47:28 0.4609 0.52306 0.40594 0.5143 0.51193 0.36895 0.65375 0.51091 0.44099 0.43514 0.5454 0.41105
4 4 10 05-Oct-0016 04:06:59 0.50106 0.48854 0.38952 0.5806 0.55353 0.52183 0.46437 0.449 0.35994 0.48053 0.50099 0.56911
5 5 10 02-Jul-0014 12:40:20 0.42546 0.47703 0.60594 0.48473 0.49456 0.52169 0.45005 0.50737 0.59695 0.49354 0.53942 0.51315
6 6 10 24-Jun-0015 05:20:08 0.54365 0.42454 0.50526 0.3918 0.54657 0.34156 0.50776 0.64644 0.41142 0.52169 0.37793 0.54506
7 7 10 26-May-0018 12:10:02 0.223 0.62658 0.57745 0.43137 0.64486 0.59084 0.27219 0.47831 0.4504 0.52788 0.4444 0.61095
8 8 10 26-Sep-0015 06:05:38 0.36107 0.45844 0.43259 0.44789 0.53122 0.51577 0.43466 0.44741 0.30144 0.48877 0.44208 0.53721
9 9 10 20-Jul-0014 02:30:31 0.52693 0.52128 0.62287 0.56108 0.55619 0.40734 0.56754 0.45903 0.51274 0.53433 0.40313 0.53245
10 10 10 11-Apr-0013 12:28:32 0.55496 0.37775 0.49104 0.64185 0.583 0.50644 0.59117 0.57325 0.58854 0.48762 0.53708 0.50528
11 11 10 14-Dec-0015 20:58:18 0.47345 0.56358 0.50469 0.42712 0.58192 0.44643 0.51888 0.55781 0.35132 0.53893 0.49807 0.61024
12 12 10 30-Oct-0018 05:14:32 0.67559 0.48449 0.42596 0.46722 0.57329 0.58917 0.52009 0.4463 0.46092 0.36197 0.61369 0.59372
13 13 10 16-Oct-0018 01:22:52 0.3809 0.47299 0.43709 0.60162 0.40392 0.67956 0.4347 0.37734 0.33699 0.4328 0.42047 0.29406
14 14 10 12-Apr-0019 05:11:28 0.44723 0.49497 0.48745 0.65644 0.5099 0.52495 0.58134 0.47569 0.41992 0.39552 0.56101 0.49381
15 15 10 18-Mar-0013 10:42:37 0.45406 0.57539 0.54544 0.45573 0.6396 0.59733 0.57942 0.46537 0.51966 0.34679 0.54309 0.41337
16 16 10 24-Mar-0022 02:02:55 0.48386 0.29842 0.38997 0.69434 0.35066 0.49995 0.55025 0.47631 0.65821 0.46389 0.43511 0.71093