How can I solve the error "Unable to solve the collocation equations -- a singular Jacobian encountered" in bvp4c?

1 次查看(过去 30 天)
I tried to solve the bvp using bvp4c procedure. But I have an error "Unable to solve the collocation equations -- a singular Jacobian encountered." How to resolve this issue?
proj()
Error using bvp4c (line 196)
Unable to solve the collocation equations -- a singular Jacobian encountered.

Error in solution>proj (line 31)
sol= bvp4c(@projfun,@projbc,solinit,options);
function sol= proj
A = 0.5;
Gr = 0.7;
Gc = 0.5;
Kp = 3.0;
beta = 0.5;
Pr = 0.3;
Df = 0.2;
Sc = 0.1;
L0 = 0.5;
Sr = 0.3;
M = 1;
Bi1 = 0.5;
Bi2 = 0.5;
K0 = 0.3;
myLegend1 = {};myLegend2 = {};
rr = [0.3 0.5 0.8];
for i =1:numel(rr)
Re = rr(i);
y0 = [1, 0, 1, 1, 0, 1, 0];
options =bvpset('stats','on','RelTol',1e-4);
x = linspace(0,10,500);
solinit = bvpinit(x,y0);
sol= bvp4c(@projfun,@projbc,solinit,options);
disp((sol.y(1,20)))
figure(1)
plot(sol.x,(sol.y(6,:)))
grid on,hold on
myLegend1{i}=['Pr = ',num2str(rr(i))];
xlabel('eta');
ylabel('(thetas-thetaf)/thetas');
i=i+1;
end
figure(1)
legend(myLegend1)
hold on
function dy= projfun(~,y)
dy= zeros(7,1);
dy(1) = y(2);
dy(2) = y(3);
dy(3) = (0.5*A*y(3) - Gr*y(4) - Gc*y(6) + (M + Kp + A)*y(2)) / (1 + (1/beta));
dy(4) = y(5);
dy(5) = (Pr*(0.5*A*y(5)) - Pr*Df*Sc*(0.5*A*y(7) + 2*A*y(6) - L0*y(6))) / (1 - (Pr*Df*Sc*Sr));
dy(6) = y(7);
dy(7) = (Sc*(0.5*A*y(7) + 2*A*dy(6)) - Sr*Pr*(0.5*A*y(5) + 2*A*y(4))) / (1 - (Sr*Df*Pr));
end
function res= projbc(ya,yb)
res= [
ya(2) - (1 + K0*ya(3));
ya(5) + Bi1*(1 - ya(4));
ya(7) + Bi2*(1 - ya(6));
yb(2);
yb(4);
yb(6);
yb(7)];
end
end
  1 个评论
Torsten
Torsten 2024-7-29
How to resolve this issue?
It's not a technical issue. Usually, there is something wrong with the equations or the boundary conditions. So you should compare both of them with the mathematical description of the problem.

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2024-7-29
编辑:Torsten 2024-7-29
Your ODE system is linear - thus you can determine its general solution having 7 free parameters. But incorporating of your boundary conditions leads to a linear system of equations where the coefficient matrix A is rank-deficient (rank 6 instead of rank 7). Consequently, your system is not solvable.
A = 0.5;
Gr = 0.7;
Gc = 0.5;
Kp = 3.0;
beta = 0.5;
Pr = 0.3;
Df = 0.2;
Sc = 0.1;
L0 = 0.5;
Sr = 0.3;
M = 1;
Bi1 = 0.5;
Bi2 = 0.5;
K0 = 0.3;
Mat = zeros(7);
Mat(1,2) = 1;
Mat(2,3) = 1;
Mat(3,2) = (M + Kp + A) / (1 + 1/beta);
Mat(3,3) = 0.5*A/(1 + 1/beta);
Mat(3,4) = -Gr/(1 + 1/beta);
Mat(3,6) = -Gc/(1 + 1/beta);
Mat(4,5) = 1;
Mat(5,5) = Pr*0.5*A/(1 - Pr*Df*Sc*Sr);
Mat(5,6) = - Pr*Df*Sc*(2*A - L0) / (1 - Pr*Df*Sc*Sr);
Mat(5,7) = - Pr*Df*Sc*0.5*A/ (1 - Pr*Df*Sc*Sr);
Mat(6,7) = 1;
Mat(7,4) = - Sr*Pr*2*A / (1 - Sr*Df*Pr);
Mat(7,5) = - Sr*Pr*0.5*A / (1 - Sr*Df*Pr);
Mat(7,7) = Sc*(0.5*A+2*A) / (1 - Sr*Df*Pr);
syms x1(t) x2(t) x3(t) x4(t) x5(t) x6(t) x7(t)
eqns = [diff(x1);diff(x2);diff(x3);diff(x4);diff(x5);diff(x6);diff(x7)]-Mat*[x1;x2;x3;x4;x5;x6;x7]==[0;0;0;0;0;0;0];
sol = dsolve(eqns,'MaxDegree',4)
sol = struct with fields:
x2: C3*(exp((t*(2976375*((13875*3^(1/2)*342589119285075140699353^(1/2))/1883723499362492536448 - 2321348855894375/1076413428207138592256)^(1/6) - 9802324*((3364850596725*((... x1: C1 + C2*(exp((t*(2976375*((13875*3^(1/2)*342589119285075140699353^(1/2))/1883723499362492536448 - 2321348855894375/1076413428207138592256)^(1/6) - 9802324*((33648505967... x3: C6*exp(-(t*(865^(1/2) - 1))/24) + C7*exp((t*(865^(1/2) + 1))/24) - C2*(exp((t*(2976375*((13875*3^(1/2)*342589119285075140699353^(1/2))/1883723499362492536448 - 23213488... x4: C2*(exp((t*(2976375*((13875*3^(1/2)*342589119285075140699353^(1/2))/1883723499362492536448 - 2321348855894375/1076413428207138592256)^(1/6) - 9802324*((3364850596725*((... x5: C4*exp((t*(9802324*((3364850596725*((13875*3^(1/2)*342589119285075140699353^(1/2))/1883723499362492536448 - 2321348855894375/1076413428207138592256)^(1/3))/960855558009... x6: C3*(exp((t*(2976375*((13875*3^(1/2)*342589119285075140699353^(1/2))/1883723499362492536448 - 2321348855894375/1076413428207138592256)^(1/6) - 9802324*((3364850596725*((... x7: C4*exp((t*(9802324*((3364850596725*((13875*3^(1/2)*342589119285075140699353^(1/2))/1883723499362492536448 - 2321348855894375/1076413428207138592256)^(1/3))/960855558009...
eqn1 = subs(sol.x2,t,0)-(1+K0*subs(sol.x3,t,0))==0;
eqn2 = subs(sol.x5,t,0)+Bi1*(1-subs(sol.x4,t,0))==0;
eqn3 = subs(sol.x7,t,0)+Bi2*(1-subs(sol.x6,t,0))==0;
eqn4 = subs(sol.x2,t,10)==0;
eqn5 = subs(sol.x4,t,10)==0;
eqn6 = subs(sol.x6,t,10)==0;
eqn7 = subs(sol.x7,t,10)==0;
[A,b] = equationsToMatrix([eqn1,eqn2,eqn3,eqn4,eqn5,eqn6,eqn7])
A = 
b = 
rank(A)
ans = 6
rank([A,b])
ans = 7

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息

产品


版本

R2015a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by