Fit data to lagged custom function

4 次查看(过去 30 天)
Hello,
I would like to ask if you can advice the correct approach I can follow to estimate the parameters of a custom lagged function
(1) y(t)=c^2*a+y(t-1)*(a-1)
where c is a known constant.
to a time series data (I can use the symbilic function to create (1) )
Thank you.
Best regards
Paolo
  2 个评论
Torsten
Torsten 2024-8-1
编辑:Torsten 2024-8-1
I would like to ask if you can advice the correct approach I can follow to estimate the parameters of a custom lagged function
You mean the parameter "a" ?
Paolo
Paolo 2024-8-2
Hi Torsten,
thank you for your feedback. Yes I mean "a"; I forgot to mention that the time series of Y is already available and I know Y(0)= 0.04356
Best regards
Paolo

请先登录,再进行评论。

采纳的回答

Harsh Kumar
Harsh Kumar 2024-8-2
编辑:Walter Roberson 2024-8-4
Hope this may help ,
% Assuming you have your y data in a vector called 'y'
% and c is your known constant
% Step 1: Prepare data
y_lag = [NaN; y(1:end-1)]; % Create lagged y, with NaN for the first value
y = y(2:end); % Remove the first value of y to match dimensions
y_lag = y_lag(2:end);
% Step 2 & 3: Define the objective function
obj_fun = @(a) sum((y - (c^2*a + y_lag*(a-1))).^2);
% Step 4: Use optimization to find the best 'a'
options = optimset('Display', 'iter');
a_est = fminsearch(obj_fun, 0.5, options); % 0.5 is an initial guess for 'a'
% Print the result
fprintf('Estimated value of a: %f\n', a_est);
% Optional: Plot the results
y_pred = c^2*a_est + y_lag*(a_est-1);
plot(y, 'b-', 'DisplayName', 'Observed');
hold on;
plot(y_pred, 'r--', 'DisplayName', 'Predicted');
legend('show');
title('Observed vs Predicted y(t)');

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Get Started with Curve Fitting Toolbox 的更多信息

产品


版本

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by