checkGradients, but the objective function has two inputs: x and xdata?

3 次查看(过去 30 天)
I'm using lsqcurvefit with the following objective function and Jacobian:
function [f, jacF] = semiCircle(p, Q)
P0 = p(1);
Q0 = p(2);
r = p(3);
f = P0 + sqrt(r^2 - (Q-Q0).^2);
if nargout > 1 % need Jacobian
jacF = [1, (Q-Q0)./sqrt(r^2-(Q0-Q).^2), r./sqrt(r^2-(Q0-Q).^2)];
end
end
I'd like to use checkGradients to verify if the Jacobian is correct. However, all of the examples in the documentation just have objective functions with one input, the parameters 'x'. Whereas my function semiCircle has two inputs: the parameters 'p' and the xdata 'Q'. Is there a way to use checkGradients for such a function?

采纳的回答

Torsten
Torsten 2024-11-14
valid = checkGradients(@(p)semiCircle(p, Q),p0)
  10 个评论
Benjamin
Benjamin 2024-11-21
编辑:Torsten 2024-11-21
I reached my daily uploads limit, so I'll just put the functions here:
load('data.mat')
Vb_ll_rms = 690;
% Inital guess
p10 = 5e6;
p20 = 2.5e7;
p30 = 3e7;
p0 = [p10, p20, p30];
[Rls, Xls, Vgls, gradientCheck] = lsqcurvefitNLS(p0, Q, P, Vb_ll_rms)
Rls = 0.0024
Xls = 0.0238
Vgls = 689.9365
gradientCheck = logical
1
function [R, X, Vg, gradientCheck] = lsqcurvefitNLS(p0, Q, P, Vo)
% Box constraints
p1_ub = min(P);
p2_lb = max(Q);
p3_lb = max(Q) - min(Q);
lb = [0, p2_lb, p3_lb];
ub = [p1_ub, inf, inf];
% Linear constraints
A = [0, 1, -1];
b = min(Q);
gradientCheck = checkGradients(@(p)semiCircle(p,Q),p0);
options = optimoptions('lsqcurvefit','Display','off','SpecifyObjectiveGradient',true);
p = lsqcurvefit(@semiCircle, p0, Q, P, lb, ub, A, b, [], [], [], options);
P0 = p(1);
Q0 = p(2);
r = p(3);
R = P0/(P0^2 + Q0^2)*Vo^2;
X = Q0/(P0^2 + Q0^2)*Vo^2;
Vg = sqrt(r^2/(P0^2 + Q0^2)*Vo^2);
end
And the other one:
function [f, jacF] = semiCircle(p, Q)
P0 = p(1);
Q0 = p(2);
r = p(3);
f = P0 + sqrt(r^2 - (Q-Q0).^2);
if nargout > 1 % need Jacobian
jacF = zeros(length(Q), length(p));
for i = 1:length(Q)
jacF(i,:) = [1, (Q(i)-Q0)/sqrt(r^2-(Q0-Q(i))^2), r/sqrt(r^2-(Q0-Q(i))^2)];
end
end
end
Torsten
Torsten 2024-11-21
As you said: the code works fine with R2024b.
But note that the call to "lsqcurvefit" has changed in R2023a to the actual call that you use in the code. So if your desktop MATLAB version is older than R2023a, linear constraints (A,b) are not yet accepted.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Systems of Nonlinear Equations 的更多信息

产品


版本

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by