Mean of 3D matrix based on range of first dimension

23 次查看(过去 30 天)
I have a 3d matrix of size (365,360,720) with daily half degree global temperature data. I'd like to take the average over a range of days, say 100-200. So effectively I'd like a mean (100:200,:,:) into a matrix of size (360,720). I'm stuck on how to quickly do this. Thanks.

采纳的回答

Star Strider
Star Strider 9 minutes 前
Perhaps something like this --
A = randn(360,360,720);
At = A(100:200,:,:);
Atm = mean(At, 1);
AtmSize = size(Atm)
AtmSize = 1×3
1 360 720
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Atm = squeeze(Atm)
Atm = 360×720
-0.0563 -0.0387 -0.0523 0.0762 -0.1329 -0.0509 0.0523 0.0332 -0.2267 -0.1836 -0.0127 -0.0402 -0.0735 0.1392 0.0235 0.0728 -0.0159 0.1024 0.0071 0.0243 -0.0520 -0.0282 0.0572 -0.0392 -0.0686 0.0673 0.0416 0.0407 0.0097 0.0737 0.0469 -0.0999 0.0627 0.0330 -0.0786 -0.0207 -0.0271 -0.1168 0.0365 0.1092 0.0897 0.0962 0.1419 0.0330 -0.0173 0.1815 -0.0110 0.0431 0.1018 -0.0074 -0.0927 -0.1060 0.0711 -0.0474 0.1863 0.1030 -0.0059 0.0058 0.0447 -0.0826 0.1906 0.0866 -0.2160 -0.2412 0.1257 0.1013 -0.0033 -0.1745 -0.0701 0.0379 -0.0344 0.0819 0.0688 -0.0467 0.1903 -0.0803 0.2209 0.2378 -0.0555 0.0585 -0.0532 -0.0156 -0.0321 0.1816 0.0592 0.0265 -0.2052 -0.0298 -0.0451 0.0030 -0.0708 0.0826 0.1403 -0.0555 -0.0678 0.0524 -0.0569 0.1118 -0.0676 -0.0215 0.1798 -0.1957 -0.0228 -0.1010 -0.1025 -0.1472 0.0396 -0.0681 -0.0649 -0.0266 0.1162 0.1447 0.1257 -0.0216 -0.0912 0.0638 0.0584 -0.0496 -0.1483 0.0754 -0.0800 -0.0840 0.1532 -0.0463 0.0745 -0.0121 -0.1472 -0.0364 -0.3824 -0.0633 -0.0319 -0.0034 0.0276 -0.0376 0.0569 -0.0032 0.1157 -0.0350 -0.1528 0.0798 -0.0070 0.0010 0.0776 0.0248 0.2047 0.0146 -0.0516 -0.1305 0.1231 -0.1489 0.0909 0.0122 0.0778 0.1473 -0.0347 -0.0859 0.1104 -0.1017 -0.0618 -0.1294 0.1392 0.1307 0.0435 -0.0578 0.0485 0.0177 0.0465 0.0444 0.1278 -0.0675 -0.0554 0.0631 0.0257 -0.0960 0.1843 -0.2281 -0.0226 -0.0779 -0.0059 0.0229 0.1359 0.0326 0.1371 -0.0836 0.0047 0.0734 0.0038 0.0420 -0.0356 -0.0251 0.1240 0.0632 -0.0085 -0.1897 0.0406 0.1528 -0.1264 -0.0851 -0.0461 -0.1030 -0.0925 0.2176 0.0395 0.2468 0.0988 0.0961 -0.0090 0.1564 0.0624 -0.0553 0.1334 -0.2958 -0.0802 -0.0781 0.0857 -0.0047 -0.1466 0.0133 -0.0773 -0.1473 -0.0936 0.1276 -0.0578 -0.0330 -0.0075 0.0237 0.0484 -0.0033 -0.1414 0.0139 0.1428 0.0325 0.1843 -0.0210 -0.0465 0.0411 -0.0249 0.1968 -0.1111 0.0148 0.0386 -0.1297 -0.0755 0.1352 0.0123 -0.1832 -0.0537 -0.1020 -0.0122 0.0468 -0.1295 -0.1598 0.1508 -0.0296 -0.1561 -0.0962 -0.1094 0.0313 0.0405 -0.0062 -0.0712 0.0468 0.1133 -0.1454 0.0240 0.0102 0.1901 0.1144 -0.0110 -0.0791 -0.0127 0.0958 -0.0837 -0.1954 -0.0482 0.0117 0.1084 -0.1303 -0.0329 0.0282 0.2331 0.0007 -0.0029 -0.0874 0.0730 -0.0068 -0.0071 -0.1582 -0.1228 -0.0003 0.1739 -0.1212 -0.0658 0.0427 -0.0349 0.1073 -0.1038 0.2022 -0.0739 -0.1452 0.1411 -0.0730 0.0093 0.0812 -0.0779 -0.0931 0.1126 0.0753 -0.1362 0.0440 -0.1879 -0.0543 -0.1332 0.1606 0.0242 -0.1093 0.1185 -0.1820 -0.0239 -0.2374 0.1241 0.0591 0.1297 0.1133 0.1033 -0.0727 -0.1683 0.0495 0.0288 0.1134 0.2239 -0.1604 -0.0833 -0.0084 0.0000 0.2061 0.0766 -0.0148 0.1127 -0.1086 -0.0613 0.0319 0.0190 -0.2960 -0.0999 -0.0719 0.0750 -0.0828 -0.1119 0.0608 -0.0867 0.1495 -0.1421 -0.0346 -0.0366 -0.1248 -0.0670 -0.1580 0.1969 0.1194 0.0338 0.0934 -0.0507 0.0570 0.1196 0.0105 -0.0177 -0.0464 0.0478 -0.1821 0.0919 -0.1310 -0.1995 0.0044 0.0293 0.0679 0.1780 0.0508 -0.0188 0.1694 0.1436 -0.0651 0.0600 0.0862 -0.0105 -0.0182 0.0309 -0.1479 -0.1018 -0.1670 0.1421 -0.0875 0.0314 0.0523 0.1086 -0.0037 -0.0581 -0.0768 -0.1244 0.0780 0.0105 -0.0382 0.0635 0.0418 0.0433 -0.2012 0.0198 -0.1365 0.0818 -0.0022 0.0028 0.1736 -0.0620 0.1086 -0.1206 -0.0350 -0.0608 0.1143 -0.0987 -0.0882 -0.0075 0.0770 0.1313 -0.0606 -0.0470 -0.0827 -0.0535 -0.0111 0.1745 -0.0278 0.0906 0.0134 0.0343 -0.0381 -0.1171 -0.0575 0.2197 0.0188 0.1222 -0.1152 0.0107 0.0537 -0.0222 0.0070 -0.0486 -0.0998 0.0843 -0.1137 -0.0296 0.0089
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
AtmSize = size(Atm)
AtmSize = 1×2
360 720
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
.

更多回答(1 个)

Matt J
Matt J about 2 hours 前
编辑:Matt J about 2 hours 前
This might seem a little counter-intuitive, but the key is that it avoids extracting a submatrix (an expensive op) from the input matrix A,
s=zeros(1,365); s(100:200)=1; s=s/sum(s);
result = reshape(s*A(:,:),360,720);
  1 个评论
Matt J
Matt J about 2 hours 前
编辑:Matt J about 2 hours 前
A short execution time comparison:
A = randn(365,360,720);
timeit(@()methodStandard(A))
ans = 0.1238
timeit(@()methodProposed(A))
ans = 0.0075
function methodStandard(A)
At = A(100:200,:,:);
result = reshape(mean(At, 1),360,720);
end
function methodProposed(A)
s=zeros(1,365); s(100:200)=1; s=s/sum(s);
result = reshape(s*A(:,:),360,720);
end

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Matrix Indexing 的更多信息

产品


版本

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by