Cant find roots with fzero

3 次查看(过去 30 天)
Jarl Bergström
Jarl Bergström 2015-6-8
This is pretty straight forward.
I have to following equation:
syms T
Qbalance(T) =(2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273)^4)/4835703278458516698824704 - 4489244199846279/70368744177664
And I'm trying to find one of the possible roots by using fzero: fzero(Qbalance,40) I know that one root is ~42 :-)
But it doesnt seem to work. Any idea what I can do to make it work anywhere between T = [-100 100] ?
Thanks!
  1 个评论
Torsten
Torsten 2015-6-8
fzero does not work with symbolic variables or expressions.
Use "solve" instead.
Best wishes
Torsten.

请先登录,再进行评论。

回答(2 个)

Titus Edelhofer
Titus Edelhofer 2015-6-8
Hi,
either do what Torsten suggests, or create a function handle instead of using syms:
Qbalance = @(T) (2585111364437669*T)/2 ...
And yes, it's 42:
answerToEverything = round(fzero(Qbalance, 40))
answerToEverything =
42
;-)
Titus
  2 个评论
Jarl Bergström
Jarl Bergström 2015-6-8
Thank you very much for your replay!
The thing is, that doesn't seems to work if I have:
syms T
a=1+T
b=T
and then Q = @(T) a+b or Q=a+b
How can I put that equation into fzero?
The reason for why I dont want to use solve is because I get 4 roots and I don't know how to separate the correct one, because T can be both positive and negative.

请先登录,再进行评论。


John D'Errico
John D'Errico 2015-6-8
编辑:John D'Errico 2015-6-8
No. It is NOT 42. Close, but no cigar. Unless of course, you round the result as did Titus. :)
If you are going to use syms, then why in the name of god and little green apples, why not solve? This is a 4th order polynomial after all.
syms T
Qbalance = (2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273)^4)/4835703278458516698824704 - 4489244199846279/70368744177664;
vpa(solve(Qbalance))
ans =
-1270.5696869775977378281084791948
42.330660289301496605774980024324
68.119513344148120611166749585241 + 814.64831383344987959986838110296i
68.119513344148120611166749585241 - 814.64831383344987959986838110296i
Looks like more like 42.33066... to me.
roots(sym2poly(Qbalance))
ans =
-1270.5696869776 + 0i
68.1195133441485 + 814.64831383345i
68.1195133441485 - 814.64831383345i
42.3306602893015 + 0i
Roots agrees.
Qbalance = @(T) (2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273).^4)/4835703278458516698824704 - 4489244199846279/70368744177664;
ezplot(Qbalance,[41,43])
grid on
Yep, the plot says so too. As does fzero, with absolutely no problems.
format long g
fzero(Qbalance,[0,100])
ans =
42.3306602893015
  4 个评论
Tewodros Bitaw
Tewodros Bitaw 2017-3-15
编辑:Tewodros Bitaw 2017-3-15
Hi Jarl I think this works better.
syms T
T0=298.15;
Qbalance(T) =(2585111364437669*T)/2251799813685248 + (7434051551537793*(T + 273)^4)/4835703278458516698824704 - 4489244199846279/70368744177664 Q=matlabFunction(Qbalance(T))
T=fzero(Q,T0)
T =
42.3307
Walter Roberson
Walter Roberson 2017-3-15
4835703278458516698824704 cannot be kept at full precision in the form shown.
syms T positive
Q = @(v) sym(v,'r');
T0 = Q(298.15);
Qbalance(T) =(sym('2585111364437669')*T)/sym('2251799813685248') + (sym('7434051551537793')*(T + sym(273))^4)/sym('4835703278458516698824704') - sym('4489244199846279')/sym('70368744177664')
solve(Qbalance(T))
The solution (in recent MATLAB) is
root(z^4 + 1092*z^3 + 447174*z^2 + (6156509634857202603287236*z)/7434051551537793 - 89068512980281706423859477/2478017183845931, z, 2)
which can be found to arbitrary precision using vpa(), or converted to double precision with double()

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Assumptions 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by