How to derive the state-space model in which the second derivative of the output of the system is needed?
4 次查看(过去 30 天)
显示 更早的评论
Dear all:
My transfer function is:
Y/U = (a1s+a0)/(b4s^4+b3s^3+b2s^2+b1s); s is the laplace symbol, U is the single input, and Y is the single output.
Now I want a state-space model where I can have the second derivative of Y, which is dotdot(y) (dotdot is second derivative with respect to time).
Any help is appreciated!
0 个评论
采纳的回答
Sebastian Castro
2015-8-11
If the above is the TF for Y, then the second derivative of Y is just Ys^2, so the TF would be:
Ys^2/U = (a1s^3+a0s^2)/(b4s^4+b3s^3+b2s^2+b1s);
In MATLAB terms, you could either mathematically rework these into a state-space, or if you're lazy like me, make both the transfer functions and then convert to State-Space. NOTE: This requires Control System Toolbox.
Y = tf([a1 a0],[b4 b3 b2 b1 0]);
Ydd = Y*tf('s')^2;
G = [Y;Ydd];
Gss = ss(G);
... and there you have it, a state-space with 2 outputs: The first being Y, the second being Y doubel dot. Hope this helped.
- Sebastian
6 个评论
Sebastian Castro
2015-8-11
Oh yes, I thought you wanted both Y and Ydotdot.
In that case, just do G = ss(Ydd);
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Dynamic System Models 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!