SVM (fitcecoc): norm(Mdl.BinaryLearners{1}.Beta) does not equal 1
1 次查看(过去 30 天)
显示 更早的评论
I'm using Matlab 2014b to run binary linear SVM classification and am looking for some clarification on the Beta values that my Model outputs.
I have 98 observations and 10 predictors.
The issue I'm having is the Beta values don't norm to 1 and I'm trying to understand why. Can anyone shed some light on this? Am I missing something?
This is my call:
Mdl = fitcecoc(trainingData,trainingLabels,'Learners',t,'Weights',trainingWeights);
where,
t = templateSVM('Standardize',0,'KernelFunction','linear');
abs(Mdl.BinaryLearners{1}.Beta) ans =
0.0465
0.0655
0.0528
0.0097
0.0129
0.0475
0.0233
0.0191
0.0217
0.0010
norm(abs(Mdl.BinaryLearners{1}.Beta)) ans =
0.1147
Cheers, Linden
2 个评论
Ilya
2015-8-26
Why does the norm of beta have to be one? Have you seen something in the MATLAB doc or SVM theory that suggests this should be the case?
采纳的回答
Ilya
2015-8-27
You need to read the whole section and the one that follows, Computing the support vector classifier. If you, you will notice that this constraint is dropped. Eventually you will come to the dual objective which is what our SVM implementation optimizes.
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Classification Trees 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!