Import too large csv data file with strings
2 次查看(过去 30 天)
显示 更早的评论
My file is about 72 MB, almost 850000 rows and on average 7 columns, so some times the number of columns changes. Data is mostly comprised of strings so i used the:
as
name= 'etch.csv';
[C1, C2, C3, C4, C5, C6, C7] = csvimport(name, 'columns', [1:7], 'noHeader', true, 'delimiter', ';' );
(i am interested only in the 7 columns even there were cases with more data) This works perfectly for small data sets. For my case it took me almost 30 minutes or even more. Any idea for something better? Thank you
PS My data type is:
1: Device Name,Category,Date,Time,Source,Message,Condition,Name,Act
2: string1,string2,mm/dd/yyyy,hh:mm:ss.sss,string,string,string,1 or 0
.....
850000: and it goes on as line 2
last column most of the times has no data but does not interest me
2 个评论
采纳的回答
Guillaume
2015-11-17
No matter what, you're bound by the reading speed of matlab. Probably the fastest way to read the file is to rea it all once with fileread. You can then split the lines with strsplit. It is then a choice of applying either of textscan, strsplit or regexp on each line. You would have to see which is faster.
Here is how I would do it using regexp:
filecontent = fileread('etch.csv');
filelines = strsplit(filecontent, {'\r', '\n'}); %split at line ending. Copes with linux and windows termination
fields = regexp(filelines, '^([^;]*);([^;]*);([^;]*);([^;]*);([^;]*);([^;]*);([^;]*);', 'tokens', 'once'); %only keep the first seven fields
fields = vertcat(fields{:})
The above takes about 3 seconds on my machine to read 85000 rows (only 8 MB of text though).
One thing it hasn't done is parse the date. This is fairly trivial to do with datetime if needed and takes no time at all.
4 个评论
Jenny Smith
2018-7-19
Hello, I am trying to follow this thread and I'm reading through the regex documentation... I don't understand what you are doing with this expression with [^;]* I have a very similar problem, my text is separated by commas and I have seven columns, and I am trying to understand how to use this function similarly.
更多回答(1 个)
dpb
2015-11-16
Can't do anything w/o at least a sample of the data file with whatever warts there are as far as missing fields, but why not go to the root i/o routines directly? For larger fields, "as near to the metal as you can get" is bound to be the ploy.
fmt='%s %s %2d/%2d/%2d %2d:%2d:%2d %s %s %s %*[^\n]';
d = textscan(fid,fmt,'delimiter',',','headerlines',1);
The result above will be a cell array of 7xN; if you do want the various variables then try same format string with textread instead.
Note there's a new %d formatting string with latest release to parse dates on input directly; I don't have past R2012b so return the m/d/y and h/m/s as numerics above. If you do want to retain the strings instead and do the conversion later (or perhaps don't need them any other way) it should be obvious where to replace the formatting to do so.
2 个评论
dpb
2015-11-16
ADDENDUM OBTW, it might turn out to be faster to use a looping construct and read a smaller subset of the file each pass rather than the whole thing at once...with textscan you can pick up from previous read automagically; textread in this regards always closes the file so it would have to reopen it every time with an updated 'headerlines' argument; probably a losing proposition.
I don't know if this would help or not; you'd just have to 'spearmint to see if less memory requirements per read operation would outperform the alternate.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Large Files and Big Data 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!