Normalization of JacobiP function

4 次查看(过去 30 天)
Dear;
I am new in MuPAD I would like to know if the matlab function JacobiP (which computes the Jacobi polynomial) is normalized to 1. To prove this I computed the following code:
syms x
a = 3.5;
b = 7.2;
P3 = jacobiP(3, a, b, x);
w = (1-x)^a*(1+x)^b;
int(P3*P3*w, x, -1, 1)
The answer is the symbolic expresion of the integral:
int((1 - x)^(7/2)*(x + 1)^(36/5)*(- (1284731*x^3)/16000 + (853923*x^2)/16000 + (44247*x)/16000 - 42439/16000)^2, x, -1, 1)
If the Jacobi polynomials are orthonormalized, the result should be 1 How can I evaluate this integral numerically? I tried (<http://es.mathworks.com/help/symbolic/mupad_ref/numeric-int.html>)
numeric::int(P3^2*w,x,-1,1)
or
numeric::int(P3^2*w,x,-1..1)
but Matlab return an error.
Many thanks in advance;
  2 个评论
Luis Isaac
Luis Isaac 2016-1-12
Thank you very much;
As can be seen the Matlab definition of JacoviP are not normalized.
So what is the normalization of the JacobiP, or how can I get orthonormalized Jacobi polynomilas whitout need to calculate the integral.
Thanks again;
Torsten
Torsten 2016-1-12
编辑:Torsten 2016-1-12
n=3;
a=3.5;
b=7.2;
normfactor=1/(2^(a+b+1)/(2*n+a+b+1)*gamma(n+a+1)*gamma(n+b+1)/(gamma(n+a+b+1)*gamma(n+1)));
fun=@(x) normfactor*jacobiP(n, a, b, x).^2.*(1-x).^a.*(1+x).^b;
value=integral(fun,-1,1);
Best wishes
Torsten.

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2016-1-12
a = 3.5;
b = 7.2;
fun=@(x) jacobiP(3, a, b, x).^2.*(1-x).^a.*(1+x).^b;
value=integral(fun,-1,1);
Best wishes
Torsten.

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 MuPAD 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by