Dear;
I am new in MuPAD I would like to know if the matlab function JacobiP (which computes the Jacobi polynomial) is normalized to 1. To prove this I computed the following code:
syms x
a = 3.5;
b = 7.2;
P3 = jacobiP(3, a, b, x);
w = (1-x)^a*(1+x)^b;
int(P3*P3*w, x, -1, 1)
The answer is the symbolic expresion of the integral:
int((1 - x)^(7/2)*(x + 1)^(36/5)*(- (1284731*x^3)/16000 + (853923*x^2)/16000 + (44247*x)/16000 - 42439/16000)^2, x, -1, 1)
If the Jacobi polynomials are orthonormalized, the result should be 1 How can I evaluate this integral numerically? I tried (<http://es.mathworks.com/help/symbolic/mupad_ref/numeric-int.html>)
numeric::int(P3^2*w,x,-1,1)
or
numeric::int(P3^2*w,x,-1..1)
but Matlab return an error.
Many thanks in advance;