6 Simultaneous equations with 6 Unknowns

3 次查看(过去 30 天)
Please can someone help me with a MATLAB program that can solve 6 simultaneous euations with 6 unknowns using either crammer's rule or gauss elimination method. Thanks

采纳的回答

the cyclist
the cyclist 2012-1-18
编辑:John Kelly 2015-2-26
I think you probably want to use the mldivide operator.
  2 个评论
MJTHDSN
MJTHDSN 2018-4-12
Dear Matlabers,
I have a similar question. Let`s assume the equations as below:
SN = rnd(5,1); a = SN(1); b = SN(2); c = SN(3); d = SN(4); e = SN(5); f = SN(6);
eq1 = a*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(4)*x(5))+(x(5)^2)) == 0;
eq2 = b*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)+(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq3 = c*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)+(2*x(4)*x(5))+(x(5)^2)) == 0;
eq4 = d*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+ (x(4)^2)-(2*x(1)*x(4)*x(5))-(x(4)*x(5))+(x(5)^2)) == 0;
eq5 = e*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq6 = f*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)-(2*x(4)*x(5))+(x(5)^2)) == 0;
here, a,b,c,d,e,f are numbers (0.43 for example). For now I consider them as SN(i):
I want to find x(1),...,x(5) values.
I have tried many ways but no solution was found.
Would you mind to help me with my problem?
Best,
Torsten
Torsten 2018-4-12
编辑:Torsten 2018-4-12
6 equations for 5 unknowns usually gives no solution since the system is overdetermined.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by