6 Simultaneous equations with 6 Unknowns
3 次查看(过去 30 天)
显示 更早的评论
Please can someone help me with a MATLAB program that can solve 6 simultaneous euations with 6 unknowns using either crammer's rule or gauss elimination method. Thanks
采纳的回答
the cyclist
2012-1-18
编辑:John Kelly
2015-2-26
I think you probably want to use the mldivide operator.
2 个评论
MJTHDSN
2018-4-12
Dear Matlabers,
I have a similar question. Let`s assume the equations as below:
SN = rnd(5,1); a = SN(1); b = SN(2); c = SN(3); d = SN(4); e = SN(5); f = SN(6);
eq1 = a*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(4)*x(5))+(x(5)^2)) == 0;
eq2 = b*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)+(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq3 = c*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)+(2*x(4)*x(5))+(x(5)^2)) == 0;
eq4 = d*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+ (x(4)^2)-(2*x(1)*x(4)*x(5))-(x(4)*x(5))+(x(5)^2)) == 0;
eq5 = e*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq6 = f*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)-(2*x(4)*x(5))+(x(5)^2)) == 0;
here, a,b,c,d,e,f are numbers (0.43 for example). For now I consider them as SN(i):
I want to find x(1),...,x(5) values.
I have tried many ways but no solution was found.
Would you mind to help me with my problem?
Best,
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!