I found the answer. Here's a simplified, better explanation of what I am doing:
A={1.2,1.3,1.6}
B={1.15,1.2,1.22,1.23,1.28,1.29,1.35,1.37,1.59,1.60}
Asize=numel(A);
Bsize=numel(B);
Increment=A;
IncrementInstances= int8(abs(testOffsetStart-testOffsetFinish)/.01);
toothCount = zeros (numel(A),IncrementInstances);
%numel(A) defines number of rows, IncrementInstances defines # of columns.
%toothCount needs to be preallocated beforehand, otherwise you will get a index out of bounds error
toothColumn = 1; % the starting column value of the toothCount matrix
for i = testOffsetStart:.01:testOffsetFinish
{
Increment=A+i;
for j=1:numel(B)
{
if(%Conditional here. Not included for certain reasons)
{
clear tmpVec; %release values from last evaluation;
tempVec=(%insert same conditional here);
toothCount((find(tmpVec==1)), toothColumn)=toothCount((find(tmpVec==1)), toothColumn)+ones(size(find(tmpVec==1)));
toothColumn=toothColumn+1;
%do more stuff here if desired
}
}
}
The above matrix will return a count at each of the given indexes in which A happened to pass the conditional for each offset. If anyone needs a better explanation, please let me know.
In other words, it creates a new column consisting of the 1D toothCount vector, except each column of the toothCount matrix refers to a specific offset.