Finding the intersection of a line and a parabola numerically
13 次查看(过去 30 天)
显示 更早的评论
hello, I have come to a stall when trying to figure out how to obtain the two elements that meet a single condition. So if I have a parabolic function and a line(condition) going through it at two different points, how can I obtain the two numerical values for those points?
This is where I am stuck:
dd=logspace(-9,1,100);
uu=sqrt(A_n*(sig_cal*g*dd(1,:)+gamma./(1.225*dd(1,:))));
u2=dd+v_dw_ms;
plot(dd,uu,'r',dd,u2,'b')
where v_dw_ms is a certain constant value on the uu axis.
I can obtain the points graphically, but I need the actual numerical values for further numerical analysis.
Thanks in advance.
0 个评论
采纳的回答
Image Analyst
2016-4-20
Just set the line and parabola equal to each other and solve for x
yParabola = a*x^2 + b*x + c
yLine = m*x+d
a*x^2 + b*x + c = m*x + d
a*x^2 + (b-m)*x + (c-d) = 0
Then use the quadratic solution formula to solve for the 2 x:
x1 = (-(b-m)-sqrt((b-m)^2-4*a*(c-d))) / (2*a)
x2 = (-(b-m)+sqrt((b-m)^2-4*a*(c-d))) / (2*a)
2 个评论
Image Analyst
2016-4-21
So simply set them equal like I said and then simplify the equation. I think you can then use roots() or fsolve() or something.
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!