i am trying to use cross validation in order to determine the optimum number of hidden units for neural network. Am getting an error which i am not able to decipher.

2 次查看(过去 30 天)
Error using crossval>evalFun (line 480) The function '@(Xtrain,Ytrain,Xtest)model_finder(i,Xtrain,Ytrain,Xtest)' generated the following error: Invalid types for comparison.
Error in crossval>getLossVal (line 517) funResult = evalFun(funorStr,arg(1:end-1));
Error in crossval (line 416) [funResult,outarg] = getLossVal(i, nData, cvp, data, predfun);
Error in nnrealmain (line 7) mcr=crossval('mcr',x,y,'predfun',hid_find,'partition',c);
This is the main code i typed for cross validation.
load('permanentpcadata.mat');
mcrs=[]; y=[ones(18,1);2*ones(13,1);3*ones(18,1);4*ones(16,1);5*ones(21,1);6*ones(9,1)];
for i=6:20
hid_find=@(Xtrain,Ytrain,Xtest)model_finder(hiiden_units,Xtrain,Ytrain,Xtest); c=cvpartition(y,'k',10); mcr=crossval('mcr',x,y,'predfun',hid_find,'partition',c);
mcrs=[mcrs mcr]; end
save('crossvalop.mat','mcrs');
index=6:20; plot(index,mcrs);
could you suggest where i have gone wrong in the implementation of cross validation?

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Gaussian Process Regression 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by