non linear minimization problem
3 次查看(过去 30 天)
显示 更早的评论
Suppose I have
aA + bB + cC = E
Where A,B,C are column vectors with components in R+; I need to find a,b,c in R such that a,b,c >= 1 and E is minimized. What's the "right" name for that kind of problem? Which class of algorithms should I use to solve that problem in matlab?
3 个评论
John D'Errico
2016-5-10
I'm intrigued how it is that the requirement that each of a,b,c are all greater than 1 is different from the requirement that they are greater than abs(1).
Must be the new math.
采纳的回答
Teja Muppirala
2016-5-11
It depends on what you mean by "minimize".
Do you mean the sum of squares, sum(E.^2)? If so then it's a quadratic programming problem and it's very easy to set up.
Do you mean the max(abs(E)) or sum(abs(E))? Then it is linear programming, and it is a bit more tricky (you need to set up the constraint matrices right).
In any case, the following is a sample of how you would do it.
----------------------------------
%% First: I'll make some random data to work with
rng(10)
N = 5; % Say 5-dimensions
A = randn(N,1);
B = randn(N,1);
C = randn(N,1);
ABC = [A B C];
%% Case 1: Minimize the sum of squares of E, also called L-2 norm
ABC = [A B C];
Q = ABC'*ABC;
abc_opt_L2 = quadprog(Q,[],[],[],[],[],ones(3,1))
E_opt = ABC*abc_opt_L2;
%% Case 2: Minimize sum(abs(E)) also called L-1 norm
f = [0 0 0 ones(1,N)];
A_cons = -eye(3+N);
A_cons = [A_cons; ABC -eye(N); -ABC -eye(N)];
b = [-1; -1 ;-1; zeros(N,1); zeros(2*N,1)];
values = linprog(f,A_cons,b,[],[]);
abc_opt_L1 = values(1:3)
E_opt = ABC*abc_opt_L1;
%% Case 3: Minimize max(abs(E)) also called L-infinity norm
f = [0 0 0 1];
A_cons = blkdiag(-eye(3+1));
A_cons = [A_cons; ABC -ones(N,1); -ABC -ones(N,1)];
b = [-1; -1 ;-1; -1; zeros(2*N,1)];
values = linprog(f,A_cons,b,[],[]);
abc_opt_Linf = values(1:3)
E_opt = ABC*abc_opt_Linf;
The code above gives me the following optimal values for a,b,c in each case
abc_opt_L2 =
1.0000
1.0851
1.0802
abc_opt_L1 =
1.0000
1.6379
1.6855
abc_opt_Linf =
1.0000
1.3236
1.0000
更多回答(3 个)
John D'Errico
2016-5-10
You want to solve for 4 parameters, a,b,c,E. They all enter the problem linearly.
However, since the set of equality constraints
a*A + b*B + c*C - E = 0
will not by solved exactly in general, you have two competing goals, which you have not said how they will be resolved. So if there are multiple elements in those vectors, no single value for {a,b,c,E} exists to satisfy all equations at once.
So, you MIGHT choose to define this as a linear least squares problem subject to bound constraints on a,b,c, but that ignores the goal that E is minimized. (May E be negative?)
This is effectively a homogeneous linear system in 4 unknowns, subject to bound constraints on {a,b,c}, as well as an additional requirement on E.
1. If your vectors have length greater than 4 then there will in general be NO exact solution.
2. If your vectors have length exactly 4, then depending on the vectors, there may be infinitely many solutions, or there will be no solution other than that all the unknowns are 0. Of course, in that case, it would be impossible for a solution to satisfy the requirement that each of {a,b,c}>1.
3. If there are less than 4 elements in each vector, or if the system is rank deficient, then there will usually be infinitely many solutions and one would choose a solution that minimizes E, subject to the bounds.
So, much will depend on the length of your vectors, and the vectors themselves.
Brendan Hamm
2016-5-10
This would be an instance of a linear problem (i.e. it is linear in the coefficients a, b and c). Therefore you would want to use the function linprog .
0 个评论
Bjorn Gustavsson
2016-5-10
Am I correct in interpreting R+ as the N-dimensional positive real number sub-space? And you want to minimize E for a, b, and c >= 1?
If so I suggest you turn off your computer and have a short sit-down with pen and paper, pencil will also do, and look at this problem for the 2-D case.
HTH
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Linear Least Squares 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!