matlab code for iterative equation
56 次查看(过去 30 天)
显示 更早的评论
Please I need matlab code to solve this iterative equation X (k+1)= c+ Tx(k) For k=0,1,2,3… with the input value c, T and x and stops when the iteration converges .
1 个评论
Star Strider
2016-6-18
Use a while loop. Decide on what ‘converges’ means in this context.
Write your code. If you have problems, post it here, along with any error it throws (copy and paste all the red text in the Command Window to a Comment here).
Experiment! Unless your code somehow manages to connect to the nuclear missile command codes, the world will not come to an end if it throws an error.
回答(3 个)
Roger Stafford
2016-6-18
If you like the lazy approach to problems, note that if abs(T) < 1, you can rewrite your equation as:
x(k+1)-b = T*(x(k)-b)
where b = c/(1-T), and therefore
x(k+1)-b = T^k*(x(1)-b).
In this form it is obvious what x(k) will converge to, namely b, since x(k)-b must converge to zero. Accordingly, carrying out all those tedious iterations becomes unnecessary. As I say, that is the lazy method.
1 个评论
Alper Olca
2020-3-27
x1=5;
x2=5;
x3=5;
x4=5;
td=10^-2;
a=0;
for i= 1:10
a=0+i;
if( (abs(x1-x1)<td && abs(x2-x2)<td) && (abs(x3-x3)<td)&& abs(x4-x4)<td)
x1=(-23+x2-x3+2*x4)/4;
x2=(-21-2*x1+x3-3*x4)/6;
x3=(-11+x1+2*x2-x4)/5;
x4=(22+x1-2*x2+3*x3)/6;
end
k=(4*x1-x2+x3-2*x4);
l=(2*x1+6*x2-x3+3*x4);
m=(-x1-2*x2+5*x3+x4);
n=(-x1+2*x2-3*x3+6*x4);
end
rslt=[k l m n ; x1 x2 x3 x4]
segun egbekunle
2016-6-26
编辑:Walter Roberson
2016-6-26
3 个评论
Alper Olca
2020-3-27
x1=5;
x2=5;
x3=5;
x4=5;
td=10^-2;
a=0;
for i= 1:10
a=0+i;
if( (abs(x1-x1)<td && abs(x2-x2)<td) && (abs(x3-x3)<td)&& abs(x4-x4)<td)
x1=(-23+x2-x3+2*x4)/4;
x2=(-21-2*x1+x3-3*x4)/6;
x3=(-11+x1+2*x2-x4)/5;
x4=(22+x1-2*x2+3*x3)/6;
end
k=(4*x1-x2+x3-2*x4);
l=(2*x1+6*x2-x3+3*x4);
m=(-x1-2*x2+5*x3+x4);
n=(-x1+2*x2-3*x3+6*x4);
end
rslt=[k l m n ; x1 x2 x3 x4]
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Conway's Game of Life 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!