Precision Recall Plot given the ground truth, predicted label, and predicted score
1 次查看(过去 30 天)
显示 更早的评论
How can i get the precision recall plot for this ? I know of the function at http://www.mathworks.com/help/stats/perfcurve.html and http://www.mathworks.com/matlabcentral/fileexchange/21528-precision-recall-and-roc-curves but the issue is that the inputs are the true class labels and the predicted scores.
For example. (I have edited my question. This is my actual real example. All detections positive classes.)
true_labels = [ 0 1 0 0 1 1 ]
predicted_labels = [ 1 1 1 1 1 1 ]
predicted_scores = [ 10 9 8 7 6 5 ] (scores for corresponding label)
If I set threshold at 6, then I get 3 false positives and 2 true positives.
true_labels = [ 0 1 0 0 1 1 ]
predicted_labels = [ 1 1 1 1 1 0 ]
If I set threshold at 8, then I get 2 false positives and 1 true positives.
true_labels = [ 0 1 0 0 1 1 ]
predicted_labels = [ 1 1 1 0 0 0 ]
3 个评论
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Detection 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!