Faster way to calculate the euclidean distance of a matrix than pdist and squareform?
3 次查看(过去 30 天)
显示 更早的评论
design=[0.625 0.875;0.25 0.75;0.375 0.125;0.875 0.375;0.125 0.625;
0 0;0.5 0.5;0.75 0.25;0.6875 0.0625;0.0625 0.8125;0.1875 0.6875;0.3125 0.3125;
0.4375 0.9375;0.5625 0.5625;0.9375 0.1875;0.8125 0.4375];
v=16;
tic
d(:,:)=squareform(pdist(design(1:v,:))).^2;
toc
This code needs about 0.009 seconds to run. I need something faster, because this calculation is in a for loop. Thank you in advance.
0 个评论
采纳的回答
Walter Roberson
2016-7-21
You can use bsxfun of @minus to do the subtractions, then .^2 to square the components, sum() along the appropriate dimension, and .^(1/2) the result. This should be marginally faster than calling pdist, but probably not much faster.
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!