Gaussian ring in 2d
18 次查看(过去 30 天)
显示 更早的评论
Hello,
I want to generate a 2d image (in form of a matrix) of a ring which is smoothed towards the outer and inner border by a Gaussian distribution, i.e. something looking like this:
That is, pixels in the image corresponding to the middle radius of the ring should have highest values and outer pixels values that are decreasing towards the borders.
Thanks, Denis
2 个评论
Naresh Sharma
2018-9-17
Can anyone suggest me the appropriate algorithm to find the center and the diameter(inner and outer) of the ring profile images?
Naresh
Petr Bouchal
2022-12-28
编辑:Petr Bouchal
2022-12-28
You can fit with the theoretical ring function using the least-squares method to find the width and central radius and calculate the inner and outer radius afterward.
%% generating ring with gaussian profile
x = linspace(-1,1,200);
y = linspace(-1,1,200);
[X,Y] = meshgrid(x,y);
[Phi,R] = cart2pol(X,Y);
R0 = 0.5; %ring radius
W = 0.2; %ring width
ring = exp(-((R-R0).^2)./W.^2);
%% finding center and diameter
fun = @(x,R) exp(-((R-x(1)).^2)./x(2).^2);
x0 = [1,1];
x = lsqcurvefit(fun,x0,R,ring);
R0_reconstructed = x(1);
W_reconstructed = x(2);
%% accuracy
R0_reconstructed
R0-R0_reconstructed
W_reconstructed
W-W_reconstructed
采纳的回答
Seth Meiselman
2016-12-15
Try something like this: create a series of circles whose amplitude is in the form of a Gaussian with respect to some defined peak radius, R0, and the usual width factor, sig.
sizex = 1024;
sizey = 1024;
[ncols, nrows] = meshgrid(1:sizex, 1:sizey);
centerx = sizex/2;
centery = sizey/2;
R0 = 300;
sig = 20;
gring = zeros(sizex,sizey)';
for i=1:400
iR = i;
oR = i+sig;
array2D = (nrows - cy).^2 + (ncols - cx).^2;
ringPixels = array2D >= iR^2 & array2D <= oR^2;
gaussring = gaussring + ringPixels.*(1/(sig*sqrt(2*pi)))*exp(-((iR-R0)/(2*sig))^2);
end
figure(1);
surf(gaussring); axis tight; shading flat; view(2); colormap('jet');
This results in the plot:
and a non-trivial slice through the image
figure(2);
plot(gring(sizex/4,:)); axis tight;
2 个评论
Seth Meiselman
2016-12-15
I should have also said, since this is made on a discrete grid- it creates the matrix you are looking for, but also has some drawbacks- it's very 'pixelated'. You can see this by rotating the surface plot and observing spikes that pop up. Nothing a quick smoothing function wouldn't remove if it was critical to remove.
更多回答(3 个)
Petr Bouchal
2022-12-23
编辑:Petr Bouchal
2022-12-28
Hi, I would say the most appropriate approach is the following:
x = linspace(-1,1,200);
y = linspace(-1,1,200);
[X,Y] = meshgrid(x,y);
[Phi,R] = cart2pol(X,Y);
R0 = 0.5; %ring radius
W = 0.2; %ring width
ring = exp(-((R-R0).^2)./W.^2);
figure(); hold on;
imagesc(ring); axis equal; colormap gray;
plot(size(ring,1)*ring(0.5*size(ring,1),:));
0 个评论
KSSV
2016-10-4
clc; clear all ;
M = 10 ;
N = 100 ;
R1 = 0.5 ; % inner radius
R2 = 1 ; % outer radius
nR = linspace(R1,R2,M) ;
nT = linspace(0,2*pi,N) ;
%nT = pi/180*(0:NT:theta) ;
[R, T] = meshgrid(nR,nT) ;
% Convert grid to cartesian coordintes
X = R.*cos(T);
Y = R.*sin(T);
[m,n]=size(X);
%
D = (X.^2+Y.^2) ;
% D(D<R1) = 1 ;
% D(D>R2) = 1 ;
Z = gauss(D);
surf(X,Y,Z);
colormap('gray')
shading interp ;
view([0 90]) ;
set(gca,'color','k')
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Descriptive Statistics 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!