How to perform non linear least square regression of eigenvalues of a matrix (matrix elements being some function of independent variable and parameters to be optimized)?
1 次查看(过去 30 天)
显示 更早的评论
Hi, I am a beginner in MATLAB and struggling with this one code. I have a (4x4) matrix whose elements are function of independent variable and parameters (say a,b,c are parameters) and x is independent variable. e.g. M= [a+b*exp(x*b),c*b*exp(x*c)....;c+a*exp(x*b)....] the eigenvalues of this matrix are y(dependent variables) I want to fit my data to.
I have the data set Xexp=[x1,x2,x3......] and Yexp=[y1,y2....]
I am trying to fit the data set (X,Y) to the eigenvalue "y" (say 2nd eigenvalue) of the matrix (M) using "lsqnonlin" where at the end of the function program I calculate "Y-y" so as to be minimized by the lsqnonlin e.g.
phiLSQ= lsqnonlin(@(phi) lambdafn(phi), initial_param); %command to start regression in main program
function LErr = lambdafn(phi) %start of the function
I am providing the data set (X,Y) in function program itself.
when I run the script I get following error
Error using horzcat
Dimensions of matrices being concatenated are not consistent.
Error in lambdafn (line 31)
Q=[a+b*exp(x*b),c*b*exp(x*c)....;c+a*exp(x*b)....] ; %the complete matrix
Error in @(phi)lambdafn(phi)
Error in lsqnonlin (line 194)
initVals.F = feval(funfcn{3},xCurrent,varargin{:});
Error in lambda (line 32)
phiLSQ= lsqnonlin(@(phi) lambdafn(phi), initial_param);
Caused by:
Failure in initial user-supplied objective function evaluation. LSQNONLIN cannot continue.
Thanks
0 个评论
采纳的回答
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Least Squares 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!