using wavelet denoising as preprocessing function with real time data.

1 次查看(过去 30 天)
When I train a neural network I need to process the training data X with multivariate wavelet denoising obtaining a new data set denoised X_den.
level = 4;
wname = 'sym2';
tptr = 'heursure';
sorh = 's';
mode = 'asym';
SCAL ='mln';
npc_app = 'none';
npc_fin = 'none';
[X_den, npc, nestco] = wmulden(X, level,wname,'mode',mode, npc_app, ...
npc_fin, tptr, sorh);
[mynet,tr]=train(mynet,X,Y);
After training I need to use 'mynet' to calculate the output of unknown data X(i).
output(i)=mynet(X(i));
Unknown data is obtained in realtime one by one and ,to be consistent with the trained network, I must denoise X(i) using the same Wavelet's parameters calculated previously.
But manual doesn't help me...
Thanks.

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Denoising and Compression 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by