Difference between two vector CDFs

1 次查看(过去 30 天)
I am struggling to work out how to derive the vector for Prob(A - B > 0) where A and B are CDFs of independent variables in vector form.
I thought going through each point in the CDF vectors and multiplying 1-CDF_B by CDF_A would give the correct result, but the resulting vector doesn't sum to 1.
  6 个评论
Ulrik William Nash
编辑:Ulrik William Nash 2017-5-5
My apologies, Torsten. I haven't been very clear. What I am looking for is not a scalar, but the PDF or CDF for another random variable, let's call it C, which equals A - B. Then, when I have this vector, I can find A > B or equivalently, C > 0.
Torsten
Torsten 2017-5-5
编辑:Torsten 2017-5-5
The CDF of C=A-B at a point z can be obtained as follows:
Multiply PDF-vector of A at points x_i with CDF-vector of B at points x_i-z, sum the products and multiply the result by the distance of the points x_i (deltax). Then take the negative of this value and add 1.
The exact formula can be derived as follows :
F_C(z)
= Prob(A-B<=z)
= integral_{x=-oo}^(x=+oo) Prob(A=x)*Prob(B>=x-z) dx
= integral_{x=-oo)^(x=+oo) f_A(x)*(1-F_B(x-z)) dx
= 1 - integral_{x=-oo}^{x=+oo} f_A(x)*F_B(x-z) dx
Maybe MATLAB's "conv" for the vectors f_A and F_B can automatically perform the task you are looking for, but I don't have the time to go into detail.
Best wishes
Torsten.

请先登录,再进行评论。

回答(1 个)

Torsten
Torsten 2017-5-5
编辑:Torsten 2017-5-5
Prob(A>B)
= integral_{a=-oo}^{a=+oo} Prob(A=a)*Prob(B<a) da
= integral_{a=-oo}^{a=+oo} f_A(a)*F_B(a) da
= integral_{a=-oo}^{a=+oo} (dF_A(a)/da)*F_B(a) da
where f_A, f_B denote PDFs of A and B and F_A, F_B denote CDFs of A and B.
Best wishes
Torsten.

类别

Help CenterFile Exchange 中查找有关 Annotations 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by