Standard deviation calculation of a time series.
2 次查看(过去 30 天)
显示 更早的评论
I wrote the following script to plot the Multiscale Entropy of a time series My_Signal in Matlab format:
>> load 'My_Signal.m'
>> x = val(1,:);
>> [entropy,scale]=msentropy(x);
>> subplot(2,1,1);
>> plot(x);
>> subplot(2,1,2);
>> plot(scale,entropy)
function varargout=msentropy(varargin)
[y,scale,info]=msentropy(x,dn,dm,dr,N,N0,minM,maxM,maxScale,minR,maxR)
The input signal x is the only REQUIRED parameter and should be a Nx1 vector of doubles in which to calculate the multiscale entropy.
I would like minR to have the value 0.15*(Standard deviation of the original time series x ).
Questions:
1)How to implement the desired minR in Matlab ?
2)Since the input signal x should be a Nx1 vector of doubles, was it wise from me to use x=val(1,:) before making use of the function?
The input signals I am using are ECG data from Physionet.
0 个评论
采纳的回答
KSSV
2017-5-18
as x is your signal (NX1) vector
minR = 0.15*std(x) ;
Read about std
If your val is a matrix and if it has signal information in the first row, then
x = val(:,1)
should be used....
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 ECG / EKG 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!