Normalize Inputs and Targets of neural network

3 次查看(过去 30 天)
Hi, i'm trying to create neural network using nprtool , i have input matrix with 9*1012 and output matrix with 2*1012 so i normalize my data using mapminmax as you can see in the code. But my data some input take a very high value numerically compared to other input so i want to know can the mapminmax can solve this problem or i should do something else to solve this because i still have a bad accuracy ?
rng('default');
x = patientInputs;
t = patientTargets ;
inputs=mapminmax(x);
targets=t;
size(inputs);
trainFcn = 'trainscg'; % Scaled conjugate gradient backpropagation.
% Create a Pattern Recognition Network
hiddenLayerSize =10;
net = patternnet(hiddenLayerSize);
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.performFcn = 'mse'; % Cross-Entropy
% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotconfusion', 'plotroc'};
net.trainParam.max_fail =55;
net.trainParam.min_grad=1e-10;
net.trainParam.show=10;
net.trainParam.lr=0.01;
net.trainParam.epochs=90;
net.trainParam.goal=0.001;
% Train the Network
[net,tr] = train(net,inputs,targets);
y = net(inputs);
e = gsubtract(targets,y);
performance = perform(net,targets,y)
tind = vec2ind(targets);
yind = vec2ind(y);
percentErrors = sum(tind ~= yind)/numel(tind);
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)
% View the Network
view(net)

采纳的回答

Greg Heath
Greg Heath 2017-6-15
MAPMINMAX can be inappropriate only if there are outliers.
Use MAPSTD to detect outliers that can be removed or modified.
Hope this helps.
Thank you for formally accepting my answer
Greg

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by