linear stability analysis of ODE

2 次查看(过去 30 天)
Hello there!
I have a question regarding linear stability analysis in MatLab.
given is the ODE
x' = x - x^3
of which I have calculated the fixed points x1 = 0 x2 = 1 x3 = -1
Now these points have to be checked for stability, both graphically and by means of linear stability analysis. I started doing that, by doing a linearization of the given differential equation and trying to set up a Jacobian.
But: since I've only got one variable and one equation, the Jacobian is reduced to a skalar, or am I seeing this wrong?
I'd need the Jacobian to get the eigenvalues and further the stability, so I can plot it in MatLab, but I don't see how I could do it with this equation.
So I would really be grateful for some help. Greetings, Tanja :-)
  1 个评论
Sagar Doshi
Sagar Doshi 2017-6-20
You are correct about the Jacobian for single equation with one variable is a scalar. This can also be seen in the Wikipedia link for liner stability here .

请先登录,再进行评论。

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by