Solve system of nonlinear equations without symbolic variables

23 次查看(过去 30 天)
Is there a way to solve a system of 3 nonlinear equations without symbolic variables? I showed how to solve the equations I need solved below using solve() but is there a way to do it without symbolic variables?
syms u dt u_z
hf = 0;
u0 = 16;
Alt = 69.96;
dz = hf - Alt;
a = 2;
theta = 35;
phi = 10;
ax = a*cosd(theta)*cosd(phi);
ay = a*sind(theta)*cosd(phi);
az = a*sind(phi) - 9.8;
f1 = 0 == u0 + a*dt - u;
f2 = 0 == u*sind(phi) - u_z;
f3 = 0 == (u_z - sqrt(2*az*dz + u_z^2)/az) - dt;
[u, u_z, dt] = solve([f1, f2, f3], [u, u_z, dt]);

采纳的回答

John D'Errico
John D'Errico 2017-6-19
编辑:John D'Errico 2017-6-19
Just create a function, then use fsolve from the optimization toolbox. There is no reason to use symbolic variables in that case. Often people think they need to create symbolic variables. A function handle is sufficient.
I think too often people assume they need to use symbolic variables, just because they don't know the value of a variable. For example, solve the problem:
f(x) = x^2 - 2 == 0
Of course, we know the answer is x = +/- sqrt(2), and the symbolic toolbox will tell us that. So we might define x as symbolic. Then define f as x^2-2, and use solve on f.
Instead, define a function handle,
f = @(x) x.^2-2;
Now just call a rootfinder (fzero) or for problems with multiple variables, fsolve. You will get a numerical result, thus 1.41421..., accurate to some number of digits.
There are good examples of the use of fzero & fsolve in the documentation, so I'm not going to retype that.

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Symbolic Math Toolbox 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by