Improved Euler Method with embedded error estimate and variable time step

2 次查看(过去 30 天)
Greetings all,
I am trying to simulate a system of equations using Improved Euler's method. I'm not really sure if I am doing the embedded error estimate or the variable time step correctly. But I want my code to repeat the previous step through my for loop when e_norm > Emax but am unsure how to do this. Any help is appreciated.
e = 0;
x = .1;
y = .1;
z = .1;
T = .1;
N = 30;
a = 15;
Emax = .1;
Emin = .01;
for n = 1:N+1
xdot1 = -a*(-0.07*e+0.085*( abs(e+1) - abs(e-1) ));
ydot1 = -1*(-0.07*e+0.085*( abs(e+1) - abs(e-1) )) - z;
zdot1 = y;
xh = x + T*xdot1;
yh = y + T*ydot1;
zh = z + T*zdot1;
xdot2 = -a*(-0.07*e+0.085*( abs(e+1) - abs(e-1) ));
ydot2 = -1*(-0.07*e+0.085*( abs(e+1) - abs(e-1) )) - zh;
zdot2 = yh;
x = x + .5*T*(xdot2 + xdot1);
y = y + .5*T*(ydot2 + ydot1);
z = z + .5*T*(zdot2 + zdot1);
e = y - x;
X(n) = x;
Y(n) = y;
Z(n) = z;
E(n) = e;
Error_x(n) = x - xh;
Error_y(n) = y - yh;
Error_z(n) = z - zh;
nx = norm(Error_x,1);
ny = norm(Error_y,1);
nz = norm(Error_z,1);
e_norm = sqrt(nx.^2 + ny.^2 + nz.^2);
if e_norm > Emax;
T = T/2;
elseif e_norm > Emin && e_norm < 0.8*Emax;
T = 1.05*T;
elseif e_norm < Emin;
T = 1.25*T;
elseif e_norm > 0.8*Emax && e_norm < Emax;
T = T;
end
timestep(n) = T
Error(n) = e_norm
end
plot(timestep)
% subplot(4,1,1)
% plot(t,X)
% subplot(4,1,2)
% plot(t,Y)
% subplot(4,1,3)
% plot(t,Z)
% subplot(4,1,4)
% plot(t,E)
%
% figure
%
% subplot(3,1,1)
% plot(t,Error_x)
% subplot(3,1,2)
% plot(t,Error_y)
% subplot(3,1,3)
% plot(t,Error_z)
%
figure
%
% subplot(3,1,1)
%plot(t,nx)
% subplot(3,1,2)
plot(Error)
% subplot(3,1,3)
% plot(t,nz)
%
% figure
%
% plot(X,Y)

采纳的回答

Richard Brown
Richard Brown 2012-4-5
you could include a while loop inside your inner loop that's loosely like this:
e_norm = inf;
while e_norm > E_max
do some stuff
e_norm = something better, hopefully
if "I've done this too many times and it's not working"
error('bad')
end
end

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Matched Filter and Ambiguity Function 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by