Behaviour of Complex Airy function

1 次查看(过去 30 天)

I want to compute numerically the following integral (I am using MATLAB)

$$\int_{\eta_0}^\infty Ai(p)dp$$ where $\eta_0=-9.0311 - 5.2141i$

What should my $\infty$ be to get the right result?

I choose $\infty$ to obey:

$(0.332i)^{1/3}N+\eta_0$

where N is a real value. At the moment I choose it to be N=80 but I am not sure on how much it has to be to be considered "infinity".

So, I am using 38.9422 +22.4833i for the upper-bound (is it a good "infinite"?) and got 9.4214E+04 - 3.7640E+05i for the integral but I don't know if this result is right or not.

An additional question: is a branch cut needed?

  1 个评论
Walter Roberson
Walter Roberson 2017-7-6
Symbolic might be easier. In Maple notation,
(1/12)*(6*(I*A*B+(1/2)*A^2-(1/2)*B^2)*GAMMA(2/3)^2*3^(1/6)*hypergeom([2/3], [4/3, 5/3], (1/9)*(A+I*B)^3)-4*(3^(1/3)*hypergeom([1/3], [2/3, 4/3], (1/9)*(A+I*B)^3)*(A+I*B)-GAMMA(2/3))*Pi)/(Pi*GAMMA(2/3))
where A and B are your real and imaginary components respectively. Roughly 94229.49804-376355.0182*I

请先登录,再进行评论。

回答(1 个)

David Goodmanson
David Goodmanson 2017-7-7
Hi Carlos,
For this integral to be meaningful, the airy function at the upper limit has to have a well defined value. As |p| --> infinity, only two values occur:
airy(p) --> 0 -60 deg < angle(p) < 60 deg
--> infinity angle(p) anything else
If you look at this plot
theta = linspace(-pi,pi,1000);
R = 20;
y = airy(R*exp(i*theta));
semilogy((180/pi)*theta,abs(y))
grid on
you can see that happening as a function of the angle. airy is tiniest on the real axis, so you can pick the 'infinity' point to be real and something like 20. Or any point with a small value.
airy(20)
ans = 1.6917e-27
C = 38.9+22.5i % your example
(180/pi)*angle(C)
ans = 30.0454 % ok
airy(C)
ans = -1.6139e-63 + 2.2011e-63i

类别

Help CenterFile Exchange 中查找有关 Creating and Concatenating Matrices 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by