Doubt regarding pdepe in matlab
1 次查看(过去 30 天)
显示 更早的评论
Hii Friends,
Could you give me your suggestion regarding this problem.
I have the following equation where in the initial, boundary conditions and other parameters have been specified.

I was able to solve in matlab using the following code
%---pdepe function-----% function [c,f,s] = gvdpde(t,z,u,DuDt) i = sqrt(-1); beta2 = -2.907e-25; T0 = 35e-12; %Ld = T0^2/abs(beta2); Ld = 4500; c = (2*i*Ld)./T0^2; f = DuDt; s = 0;
%---Initial condition----% function u0 = gvdic(t) T0 = 35e-12; u0 = exp(-0.5.*(t/T0).^2);
%-----Boundary condition-----% function [pl,ql,pr,qr] = gvdbc(tl,ul,tr,ur,z) pl = 0; ql = 1; pr = ur - 1; qr = 1;
%-----Main function-----% function gvd
clc; clear all; close all;
m = 0; T0 = 35e-12; t = linspace(-30*T0,30*T0,150); z = linspace(0,1000,100); z1 = linspace(0,4500,100); z2 = linspace(0,45000,100);
sol = pdepe(m,@gvdpde,@gvdic,@gvdbc,t,z); sol1 = pdepe(m,@gvdpde,@gvdic,@gvdbc,t,z1); sol2 = pdepe(m,@gvdpde,@gvdic,@gvdbc,t,z2); % Extract the first solution component as u. u = sol(:,:,1); u1 = sol1(:,:,1); u2 = sol2(:,:,1);
% A surface plot is often a good way to study a solution. surf(t,z,abs(u2)); title('Numerical solution computed with 20 mesh points.'); xlabel('Time t'); ylabel('Distance z'); % A solution profile can also be illuminating. figure; plot(t,abs(u(end,:)),t,abs(u1(end,:)),t,abs(u2(end,:)),'LineWidth',2); legend('z<<Ld','z=Ld','z>Ld'); xlabel('Time t'); ylabel('Intensity'); grid on % --------------------------------------------------------------
Now in the next step i need to add 3'rd order flux term as shown in the snap

Is it possible to solve it using the same pdepe function. Can anyone give me an hint to solve this.
Awaiting your kind replies.
pa1
5 个评论
Torsten
2017-7-14
Isn't it true that usually, the degree of the PDE in space determines the number of boundary conditions ? In this case, you had to supply three conditions.
Best wishes
Torsten.
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Geometry and Mesh 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!