DagNN Why adding convolution layer reduces the intensity of the output values?

2 次查看(过去 30 天)
I'm trying to estimate density map using Deep learning Architecture with DagNN (MatConvnet). I've seen output abruptly reduce in intensity after passing the convolution layer. I tried using LRN normalization to enhance the output- however the running error and objective resulted in 'NaN' or 'Inf'.
The conv layer is defined as:
net.addLayer('conv5', dagnn.Conv('size', [1,1,8,1], 'hasBias', true, 'stride', [1, 1], 'pad', [1 1 1 1]), {'lrn4'}, {'prediction'}, {'conv5f' 'conv5b'});
net.params(9).value= 0.1*scal*randn(1,1,8,1, 'single');
net.params(10).value= 0.001*init_bias*ones(1, 1, 'single');%'biases',
net.params(9).learningRate=1;net.params(9).weightDecay=1;
net.params(10).learningRate=2;net.params(10).weightDecay=0;

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Deep Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by