Statistically comparison between n sets of data which have non Gaussian distribution

6 次查看(过去 30 天)
Hello, I have three groups of data resulted from a feature extraction. I want to see if the feature I selected has the comparison significance or not. Actually, I want to see if I can use this feature, or this doesn't have any discriminating value, so i n this case to ignore it. For this, I should do the statistics to understand weather there is any relation between groups for this feature or not. The resulted histogram of distributions of each class are as follow:
According to my search these distributions aren't Gaussian and so I use Mann-Whitney test to see if there is a correlation between the groups. There are two values h and p:
h shows to reject the null hypotheses or not (h=1 rejection, h=0 a failure for rejection)
P-value also shows the evidence against the null hypotheses.
My question is first, did I go correct for using this test? Also how should I interpret these values?
The result for instance for the first two groups were as follow:
p =
1.5170e-09
h =
logical
1
stats =
struct with fields:
zval: -6.0425
ranksum: 1648
Thank you for reading my post.

采纳的回答

Star Strider
Star Strider 2017-10-13
The Mann-Whitney (the ranksum function) is for two-sample comparisons only. If you want to do multiple comparisons, the kruskalwallis (link) or friedman (link) (and multcompare (link)) functions might be more appropriate.
You need to decide, based on your knowledge of your data.
As with everything in statistics, this is not trivial. For a reference, I suggest: Hollander, et al., Nonparametric Statistical Methods, 3e, Section 6.5 (ISBN 978-0-470-38737-5).
  8 个评论

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Hypothesis Tests 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by