matlab function equivalent to fit

2 次查看(过去 30 天)
Is there a function that is equivalent to the built-in function fit? Something that is simple and easy to understand how the exponential regression is calculated.
  3 个评论
amateurintraining
amateurintraining 2017-11-22
I apologize. It's my first time using fit. What do you mean by model? I am trying to get the slope of an exponential decay function from a set of points.
James Tursa
James Tursa 2017-11-22
"exponential decay" is the "model" Walter is asking about.

请先登录,再进行评论。

回答(2 个)

Walter Roberson
Walter Roberson 2017-11-22
Exponential decay is the model
Y = A * exp(-B * x)
You can take the log of both sides,
log(Y) = log(A) - B * x
and now you have a linear fit.

Image Analyst
Image Analyst 2017-11-22
Try fitnlm() in the Statistics and Machine Learning Toolbox.
% Uses fitnlm() to fit a non-linear model (an exponential decay curve) through noisy data.
% Requires the Statistics and Machine Learning Toolbox, which is where fitnlm() is contained.
% Initialization steps.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 20;
% Create the X coordinates from 0 to 20 every 0.5 units.
X = 0 : 0.5 : 20;
% Define function that the X values obey.
a = 10 % Arbitrary sample values I picked.
b = 0.4
Y = a + exp(-X * b); % Get a vector. No noise in this Y yet.
% Add noise to Y.
Y = Y + 0.05 * randn(1, length(Y));
% Now we have noisy training data that we can send to fitnlm().
% Plot the noisy initial data.
plot(X, Y, 'b*', 'LineWidth', 2, 'MarkerSize', 15);
grid on;
% Convert X and Y into a table, which is the form fitnlm() likes the input data to be in.
tbl = table(X', Y');
% Define the model as Y = a + exp(-b*x)
% Note how this "x" of modelfun is related to big X and big Y.
% x((:, 1) is actually X and x(:, 2) is actually Y - the first and second columns of the table.
modelfun = @(b,x) b(1) + exp(-b(2)*x(:, 1));
beta0 = [10, .4]; % Guess values to start with. Just make your best guess.
% Now the next line is where the actual model computation is done.
mdl = fitnlm(tbl, modelfun, beta0);
% Now the model creation is done and the coefficients have been determined.
% YAY!!!!
% Extract the coefficient values from the the model object.
% The actual coefficients are in the "Estimate" column of the "Coefficients" table that's part of the mode.
coefficients = mdl.Coefficients{:, 'Estimate'}
% Create smoothed/regressed data using the model:
yFitted = coefficients(1) + exp(-coefficients(2)*X);
% Now we're done and we can plot the smooth model as a red line going through the noisy blue markers.
hold on;
plot(X, yFitted, 'r-', 'LineWidth', 2);
grid on;
title('Exponential Regression with fitnlm()', 'FontSize', fontSize);
xlabel('X', 'FontSize', fontSize);
ylabel('Y', 'FontSize', fontSize);
legendHandle = legend('Noisy Y', 'Fitted Y', 'Location', 'north');
legendHandle.FontSize = 25;
% Set up figure properties:
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
% Get rid of tool bar and pulldown menus that are along top of figure.
% set(gcf, 'Toolbar', 'none', 'Menu', 'none');
% Give a name to the title bar.
set(gcf, 'Name', 'Demo by ImageAnalyst', 'NumberTitle', 'Off')

类别

Help CenterFile Exchange 中查找有关 Nonlinear Regression 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by