Structured mesh in MATLAB PDE toolbox

7 次查看(过去 30 天)
I found a way to create an structured quadratic mesh. They way I do it is as follows. For example if I have a rectangle. I divide it to many squares and then mesh each square to two triangular mesh.
if true
numberOfPDE = 3;
model = createpde(numberOfPDE);
global dl
L=2;
h=1;
dl=.05 ;
dh=dl ;
[xq,yq]=meshgrid( [0:dl:L], [-h/2:dh:h/2]);
n=size(xq,1);
m=size(xq,2);
k=1;
R=[];
for i=1:n-1
for j=1:m-1
R(:,k) =[3,4,xq(i,j),xq(min(i+1,n),j),xq(min(i+1,n),min(m,j+1)),xq(i,min(m,j+1)),yq(i,j),yq(min(i+1,n),j),yq(min(i+1,n),min(m,j+1)),yq(i,min(m,j+1))];
k=k+1;
end
end
end
gm = [R];
for i=1:size(R,2)
str{i} = ( sprintf('R%d',i) );
end
sf=[];
for i=1:size(R,2)
sf=char([str{i},'+',sf]);
end
sf=sf(1:end-1);
delete(model.Geometry)
model.Geometry = []
ns = char(str);
ns = ns';
g= decsg(gm,sf,ns);
geometryFromEdges(model,g);
figure
pdegplot(model,'EdgeLabels','on');
axis equal
title 'Geometry with Edge Labels';
This code creates the geometry, The following is the meshing part.
if true
order='quadratic';
% order='linear';
mesh=generateMesh(model,'GeometricOrder', order ,'Hmax' ,.05 , 'MesherVersion','R2013a','Hgrad',1.01,'JiggleIter',100 );
figure(200)
pdemesh(model,'NodeLabels','off')
[p,e,t] = meshToPet(mesh);
axis equal
end
Then PDE is solved as follows.
if true
a = [0 0 0 0 0 0 0 0 0]';
f = [0 0 0];
applyBoundaryCondition(model,'mixed',...
'Edge', 761:780 ,...
'u', 0,'EquationIndex', 3 ,'Vectorized','on' );
applyBoundaryCondition(model,'dirichlet',...
'Edge',[1:40,1601:1609],...
'u', @myConstPsi2Rev,'Vectorized','on' );
applyBoundaryCondition(model,'dirichlet',...
'Edge',1610:1611,...
'u', @myConstPsi3Rev,'Vectorized','on' );
applyBoundaryCondition(model,'dirichlet',...
'Edge',[1612:1620,1561:1600],...
'u', @myConstPsi4Rev,'Vectorized','on' );
C=@ccoefPsiDevi;
specifyCoefficients(model,'m',0,'d',0,'c',C,'a',a,'f',f);
end
if true
format long
model.SolverOptions.MinStep=0;
model.SolverOptions.ReportStatistics = 'on';
model.SolverOptions.MaxIterations=5000;
model.SolverOptions.ResidualTolerance=1.6819e-06
%%solve PDE
tic
result = solvepde(model);
toc
end
The functions used as C coefficients and Boundary conditions are as follows.
if true
function cmatrix = ccoefPsiDevi(region,state)
% global xe ye %epsilon %error
n1 = 36;
nr = numel(region.x) ;
cmatrix = zeros(n1,nr);
e= (.1);
normrev= (sqrt(e^2 +(state.uy(1,:)+state.ux(2,:)).^2+2*state.uy(2,:).^2+2*state.ux(1,:).^2 ) );
fac=1 ;
cmatrix(1,:) = fac*2./normrev;
cmatrix(4,:) = fac*1./normrev;
cmatrix(14,:) = fac*1./normrev;
cmatrix(26,:) = -region.y;
cmatrix(27,:) = region.y;
cmatrix(7,:) = fac*1./normrev;
cmatrix(17,:) = fac*1./normrev;
cmatrix(20,:) = fac*2./normrev;
cmatrix(30,:) = region.x;
cmatrix(31,:) = -region.x;
cmatrix(10,:) = -region.y;
cmatrix(11,:) = region.y;
cmatrix(22,:) = region.x;
cmatrix(23,:) = -region.x;
end
end
if true
function bcMatrix = myConstPsi2Rev(region,state)
bcMatrix = [ 0*region.y ;
20*dl*ones(size(region.y));
0*region.y] ;
end
end
if true
function bcMatrix = myConstPsi3Rev(region,state)
global psixb psiyb
bcMatrix = [ 0*region.y;
-20*region.y;
0*region.y;]
end
end
if true
function bcMatrix = myConstPsi4Rev(region,state)
bcMatrix = [ 0*region.y;
-20*dl*ones(size(region.y));
0*region.y ];
end
end
But the problem is because the geometry is consisting of many squares instead of one rectangle. My code becomes very slow. How can I change the geometry after meshing to the rectangle with out having any issues. Or is there any other way to do this. I can not use legacy work flow because the elements are only linear in legacy, and I need quadratic elements. My results are much smother with this structured mesh, rather than the Matlab default unstructured mesh.So I really need this structured mesh, but because of the geometry the code is super slow. Please help me.
  1 个评论
Kaveh Gharibi
Kaveh Gharibi 2017-11-29
The soloution to this problem is here:
https://www.mathworks.com/matlabcentral/answers/346410-is-there-a-way-to-import-2d-meshes-nodes-and-triangles-into-pde-model-objects

请先登录,再进行评论。

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Geometry and Mesh 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by