use of nonlinear curve fitting with Monte-Carlo analysis

3 次查看(过去 30 天)
Hi, I am trying to fit a non-linear model with experimental data and also want to run Monte-Carlo analysis with that but it seems very difficult. please help me in this regard. Thank you
temp=[24.88503903
78.50497273
139.9636403
194.6529783
297.4975938
397.283713
];
yieldstress=[45.00727678
36.79417319
37.5451424
33.05702304
30.41701789
28.98254504
];
nsample=1000;
for i=1:nsample
DD=1e12+2e12*randn(1);
self_coff=0.08+0.04*randn(1);
line_energy=0.5+0.5*randn(1);
conversion_factor=0.32+0.06*randn(1);
threshold_stress=25.9e9*2.86e-10.*sqrt(DD).*((0.5.*line_energy)+sqrt(self_coff));
ave_strainrate=2.86e-10*1e12.*sqrt(DD);
fun(i) =@(x,xdata)threshold_stress+(x(1).*0.89).*(1-((((8.617e-5.*temp)./x(2).*log(6.667e-
4./ave_strainrate)).^(1/1.5)).^(1/0.6667)))./(conversion_factor);
x0 = [1.8 4];
[x,resnorm,~,exitflag,output]=lsqcurvefit(fun(i),x0,temp,yieldstress);
end

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by