Is there an easy way to make numerical simulations of the ODE of the form dx1/dt=x1(2-x1-x2), dx2/dt=x2(3-x1-x2-x3) for any xn?

1 次查看(过去 30 天)
I have tried doing for 'n=5' and here is my code; dx = @(t,x) [x(1); x(1)*(2-x(1)-x(2)); x(2); x(2)*(3-x(1)-x(2)-x(3)); x(3); x(3)*(3-x(2)-x(3)-x(4)); x(4); x(4)*(3-x(3)-x(4)-x(5)); x(5); x(5)*(2-x(4)-x(5))]; tspan=[0 15]; x0=[0 2 0 3 0 4 0 6 0 8]; [t,x] = ode45(@(t,x) dx(t,x), tspan, x0); figure(1) plot(t, x)
Can someone please check if this code is correct, if not, how can I improve if and for any 'n'?. Thanks in advance.

采纳的回答

Torsten
Torsten 2018-4-5
n = 5;
tspan=[0 15];
x0 = [2 3 4 6 8];
[t,x] = ode45(@(t,x) derivatives(t,x,n), tspan, x0);
function dx = derivatives(t,x,n)
dx = zeros(n,1);
dx(1) = x(1)*(2-x(1)-x(2));
for i = 2:n-1
dx(i)=x(i)*(3-x(i-1)-x(i)-x(i+1));
end
dx(n) = x(n)*(2-x(n-1)-x(n));
end
Best wishes
Torsten.
  3 个评论
Torsten
Torsten 2018-4-5
All examples given here are with corresponding plot commands:
https://de.mathworks.com/help/matlab/ref/ode45.html
Best wishes
Torsten.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by