Code Vectorization in custom layer
1 次查看(过去 30 天)
显示 更早的评论
Hi, we are designing a custom layer where we need to calculate the back-derivative from a 4D matrix
Here is a simple way using for loop to implement it
X = zeros(2,2,2,2);
X([1 5 7 10 12 14 16]) = rand(7,1);
kernelsize=5;
A=cell(2,1);
A{1}=rand(2,5);
A{2}=rand(2,5);
f=cell(2,1);
f{1}=rand(2,1);
f{2}=rand(2,1);
k = find(X);
[ii, jj, kk, ll] = ind2sub( size(X), k);
Z=zeros(size(X));
dLdW=zeros(2,5,2);
for j=1:kernelsize
for i=1:length(k)
Z(k(i))=X(k(i))*dot(A{jj(i)}(:,j),f{jj(i)});
end
sol=sum(Z,2);
dLdW(:,j,:)=sum(sol,4);
Z=zeros(size(X));
end
Is there a way to not use for loop? Because I want to use GPU to train it.
0 个评论
采纳的回答
Joss Knight
2018-4-15
Adotf = cellfun(@(aa,ff)ff.'*aa, A, f, 'UniformOutput', false);
Adotf = cat(1, Adotf{:});
Z = X(k).*Adotf(jj,:);
j = repmat(1:kernelsize, numel(ii), 1);
ii = repmat(ii, 1, kernelsize);
kk = repmat(kk, 1, kernelsize);
dLdW = accumarray([ii(:), j(:), kk(:)], Z(:), [size(X,1) kernelsize, size(X,3)]);
Are all the A matrices and f vectors the same size? Because if so you shouldn't use a cell array, you should concatenate in dim 3 and use pagefun instead of cellfun (if you're using gpuArray).
A = cat(3, A{:});
f = cat(2, f{:});
f = shiftdim(f, -1);
Adotf = pagefun(@mtimes, f, A);
Adotf = permute(Adotf, [3 2 1]);
Z = X(k).*Adotf(jj,:);
j = repmat(1:kernelsize, numel(ii), 1);
ii = repmat(ii, 1, kernelsize);
kk = repmat(kk, 1, kernelsize);
dLdW = accumarray([ii(:), j(:), kk(:)], Z(:), [size(X,1) kernelsize, size(X,3)]);
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 GPU Computing 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!