How to get 10 fold cross validation results.
1 次查看(过去 30 天)
显示 更早的评论
If there is any way to get 10 confusion matrices or accuracy of the 10 fold cross validation for svm classifier.
0 个评论
回答(1 个)
Muskan
2024-9-25
Hi,
You can use the MATLAB function "kfoldPredict" to classify observations in cross-validated classification mode. You can also use MATLAB's built in function "confusionmat" to compute confusion matrix for classification problem. Here is an example as mentioned in the following documentation on how to achieve the same: https://www.mathworks.com/help/stats/confusionmat.html
g1 = [3 2 2 3 1 1]'; % Known groups
g2 = [4 2 3 NaN 1 1]'; % Predicted groups
C = confusionmat(g1,g2) ; % Returns the confusion matrix
In order to evaluate your model's performance, you can use MATLAB's function "perfcurve". Please refer to the following documentation of "perfcurve" for a better understanding: https://www.mathworks.com/help/stats/perfcurve.html
I hope this helps!
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!