How to get 10 fold cross validation results.

1 次查看(过去 30 天)
If there is any way to get 10 confusion matrices or accuracy of the 10 fold cross validation for svm classifier.

回答(1 个)

Muskan
Muskan 2024-9-25
Hi,
You can use the MATLAB function "kfoldPredict" to classify observations in cross-validated classification mode. You can also use MATLAB's built in function "confusionmat" to compute confusion matrix for classification problem. Here is an example as mentioned in the following documentation on how to achieve the same: https://www.mathworks.com/help/stats/confusionmat.html
g1 = [3 2 2 3 1 1]'; % Known groups
g2 = [4 2 3 NaN 1 1]'; % Predicted groups
C = confusionmat(g1,g2) ; % Returns the confusion matrix
In order to evaluate your model's performance, you can use MATLAB's function "perfcurve". Please refer to the following documentation of "perfcurve" for a better understanding: https://www.mathworks.com/help/stats/perfcurve.html
I hope this helps!

类别

Help CenterFile Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by