Try this:
The Code —
N1 = 200; % Number Of Points In Ring
R1 = 0.25 + 0.2*(rand(1, N1)-0.5); % Random Marker Radii
A1 = linspace(0, 2*pi, N1); % Define Angle Vector
Ring1 = R1.*[cos(A1); sin(A1)]; % Create Ring Coordinates
N2 = 200;
R2 = 0.85 + 0.2*(rand(1, N1)-0.5);
A2 = linspace(0, 2*pi, N1);
Ring2 = R2.*[cos(A1); sin(A1)];
figure
plot(Ring1(1,:), Ring1(2,:), '^b', 'MarkerFaceColor','b')
hold on
plot(Ring2(1,:), Ring2(2,:), 'or', 'MarkerFaceColor','r')
hold off
axis equal
N1 = 200; % Number Of Points In Ring
R1 = 0.25 + 0.2*(rand(1, N1)-0.5); % Random Marker Radii
Z1 = 0.10 + 0.2*(rand(1, N1)-0.5); % Random Z-Values
A1 = linspace(0, 2*pi, N1); % Define Angle Vector
Ring1 = R1.*[cos(A1); sin(A1)]; % Create Ring Coordinates
N2 = 200;
R2 = 0.85 + 0.2*(rand(1, N1)-0.5);
Z2 = 0.80 + 0.2*(rand(1, N1)-0.5);
A2 = linspace(0, 2*pi, N1);
Ring2 = R2.*[cos(A1); sin(A1)];
figure
plot3(Ring1(1,:), Ring1(2,:), Z1, '^b', 'MarkerFaceColor','b')
hold on
plot3(Ring2(1,:), Ring2(2,:), Z2, 'or', 'MarkerFaceColor','r')
hold off
axis equal
grid on
You will probably need to tweak this a bit to get the result you want. See the documentation for the plot (link) and plot3 (linked to at the end of that page) functions to discover all their options.
The Plots —