Matrix Input Layer for Deep Neural Networks
20 次查看(过去 30 天)
显示 更早的评论
I would like to be able to use the trainNetwork function to train a deep neural network on a matrix. It is not sequence data or an image and I know the only available input layers the deep networks provide is the imageInputLayer and the sequenceInputLayer. Is there any way that I can input a matrix to classify rather than the other two? Thanks in advance.
2 个评论
采纳的回答
JESUS DAVID ARIZA ROYETH
2020-2-15
The wonderful thing about Matlab is that almost everything is seen as matrices or vectors, in fact this is not a disadvantage but one of its greatest strengths, therefore, a grayscale image is a 2d matrix for Matlab, a picture Color is a 3D matrix. The answer then is yes, you can use imageInputLayer to train your matrices, in fact all the procedure that occurs within deep learning in the case of images are operations with matrices.
Maybe your matrices that you want to classify are images and you have not noticed! ,
try somehow graphing your matrices and maybe your your own brain will find patterns to classify
Now in the practical case For example, if you have a 50x28 matrix :
inputlayer = imageInputLayer ([50 28], 'Name', 'entry')
or 50,28 in InputSize in the Deep Network Designer
I hope that when you see my answer in the matrix of your screen, your convolutional networks classify me as a good contributor
2 个评论
Gian-Andrea Heinrich
2020-3-4
If I understood LMs question right, he has one m x n matrix containing m samples with n-1 features each and one target. (at least, this is my usecase)
Thus, matlab thinks I am inputing just one image. Even if I set the input layer to [n-1 1]. Probably, I need to reshape my matrix.
更多回答(1 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!