Matlab ode15s change parameter value at specific time during solution

2 次查看(过去 30 天)
I'm trying to change the value of my variable Pin at specific points in time during the ode15s solution, in order to evaluate the dynamic response. But I get the error:
Error using odearguments (line 83)
The last entry in tspan must be different from the first entry.
I believe the error is somewhere here:
t_start=0;
t=t_start;
y=cond;
while idx_seg< length(t_seg)
idx_seg=idx_seg+1;
t_end=t_seg(idx_seg);
[t_sol,y_sol]=ode15s(@(t,y)f1_v1,[t_start, t_end],y(end,:));
t = [t; t_sol(2 : end)];
y = [y; y_sol(2 : end, :)];
t_start = t_end;
end
Here's the full code:
function [t,y]=f2_v4_21_08_18(cond, t_seg, Pin)
% -----Constants -----
N=3.38*10^6; k=2.96*10^-7; alphat=2.6*10^-5; chb=0.2; M=30*10^-9; K=5*10^(-8)*10^-3; H=0.42; S0=0.98;
bp=0.8; ro=1040*10^6;
Ey=10^4*0.00750062;
v=3* 7.5*10^-6;
r=[0.0119850000000000;0.00958500000000000;0.00764000000000000;0.00604000000000000;0.00473000000000000;0.00366000000000000;0.00400000000000000;0.00575500000000000;0.00726500000000000;0.00889500000000000;0.0107250000000000;0.0128500000000000;0.0153850000000000]; %mm
L=[1.27076497943190;0.932650928622621;0.544932761536915;0.303082765473283;0.161799106136796;0.155424891414508;0.245072221621871;0.475103125625241;0.273016623935407;0.427646038844292;0.634082325832342;0.846354695529459;0.938696601022114]; %mm
h=[0.00484000000000000;0.00425000000000000;0.00381000000000000;0.00349000000000000;0.00327000000000000;0.00314000000000000;0.000309000000000000;0.00115000000000000;0.00145000000000000;0.00178000000000000;0.00215000000000000;0.00257000000000000;0.00308000000000000];%mm
mu=[1.19409872390289e-05;1.12760032450214e-05;1.06583134073916e-05;1.00804835896938e-05;9.56162410894012e-06;9.20633512007761e-06;9.29628357913371e-06;9.96996247072375e-06;1.05291656347798e-05;1.10660983739492e-05;1.16035344790804e-05;1.21594980256614e-05;1.27473361251949e-05]; %mmHg*s
R= [1.8728 3.1728 4.3411 5.8457 7.8705 20.3059 22.6623 10.9961 2.6277 1.9250 1.4161 0.9612 0.5439]; %[mmHg*s/ml]
pdrop=[0,6.93,5.87,4.02,2.70,1.82,2.35,2.62,1.27,0.61,0.89,1.31,1.78,2.01];
n=[1,2,4,8,16,32,64,32,16,8,4,2,1];
%%%%%
idx_seg=0;
function dy= f1_v1(t,y)
dy=zeros(13,1);
pt1=y(1); pt2=y(2); pt3=y(3); pt4=y(4); pt5=y(5); pt6=y(6); pt7=y(7); pt8=y(8); pt9=y(9); pt10=y(10); pt11=y(11); pt12=y(12); pt13=y(13);
% -----Constants -----
...
R= [1.8728 3.1728 4.3411 5.8457 7.8705 20.3059 22.6623 10.9961 2.6277 1.9250 1.4161 0.9612 0.5439]; %[mmHg*s/ml]
pdrop=[0,6.93,5.87,4.02,2.70,1.82,2.35,2.62,1.27,0.61,0.89,1.31,1.78,2.01];
for i=1:1:14
if i==1
pb(i)=Pin(idx_seg);
else
pb(i)=pb(i-1)-pdrop(i);
end
pb(i)=pb;
end
diffp=diff(pb)*(-1);
pb_s=[pb(1)+pb(2);pb(2)+pb(3);pb(3)+pb(4);pb(4)+pb(5);pb(5)+pb(6);pb(6)+pb(7);pb(7)+pb(8);pb(8)+pb(9); pb(9)+pb(10);pb(10)+pb(11);pb(11)+pb(12);pb(12)+pb(13);pb(13)+pb(14)];
for z=1:1:14
S(z)=(((pb(z)^3+150*pb(z))^(-1) *23400)+1)^(-1);
end
deltaS=diff(S)*(-1);
for j=1:1:13
kin=v;
compl(j)=((3*pi*L(j)*r(j)^3)/(2*Ey*h(j)) )*10^-3;
Vb(j)=(compl(j)/2)*pb_s(j); %[ml]
q(j)=diffp(j)/R(j);
Vt(j)= chb*H*q(j)*deltaS(j)/M;
end
%%differential eq
dpt1=1/(alphat*Vt(1))*( (2*pi*K*r(1)*L(1))/h(1) *(1/2*(pb(1)+pb(2)) -pt1) -M*Vt(1));
dpt2=1/(alphat*Vt(2))*( (2*pi*K*r(2)*L(2))/h(2) *(1/2*(pb(2)+pb(3)) -pt2) -M*Vt(2));
dpt3=1/(alphat*Vt(3))*( (2*pi*K*r(3)*L(3))/h(3) *(1/2*(pb(3)+pb(4)) -pt3) -M*Vt(3));
dpt4=1/(alphat*Vt(4))*( (2*pi*K*r(4)*L(4))/h(4) *(1/2*(pb(4)+pb(5)) -pt4) -M*Vt(4));
dpt5=1/(alphat*Vt(5))*( (2*pi*K*r(5)*L(5))/h(5) *(1/2*(pb(5)+pb(6)) -pt5) -M*Vt(5));
dpt6=1/(alphat*Vt(6))*( (2*pi*K*r(6)*L(6))/h(6) *(1/2*(pb(6)+pb(7)) -pt6) -M*Vt(6));
dpt7=1/(alphat*Vt(7))*( (2*pi*K*r(7)*L(7))/h(7) *(1/2*(pb(7)+pb(8)) -pt7) -M*Vt(7));
dpt8=1/(alphat*Vt(8))*( (2*pi*K*r(8)*L(8))/h(8) *(1/2*(pb(8)+pb(9)) -pt8) -M*Vt(8));
dpt9=1/(alphat*Vt(9))*( (2*pi*K*r(9)*L(9))/h(9) *(1/2*(pb(9)+pb(10)) -pt9) -M*Vt(9));
dpt10=1/(alphat*Vt(10))*( (2*pi*K*r(10)*L(10))/h(10) *(1/2*(pb(10)+pb(11)) -pt10) -M*Vt(10));
dpt11=1/(alphat*Vt(11))*( (2*pi*K*r(11)*L(11))/h(11) *(1/2*(pb(11)+pb(12)) -pt11) -M*Vt(11));
dpt12=1/(alphat*Vt(12))*( (2*pi*K*r(12)*L(12))/h(12) *(1/2*(pb(12)+pb(13)) -pt12) -M*Vt(12));
dpt13=1/(alphat*Vt(13))*( (2*pi*K*r(13)*L(13))/h(13) *(1/2*(pb(13)+pb(14)) -pt13) -M*Vt(13));
pt_tot=[pt1;pt2;pt3;pt4;pt5;pt6;pt7;pt8;pt9;pt10;pt11;pt12;pt13];
dy=[dpt1;dpt2;dpt3;dpt4;dpt5;dpt6;dpt7;dpt8;dpt9;dpt10;dpt11;dpt12;dpt13];
end
t_start=0;
t=t_start;
y=cond;
while idx_seg< length(t_seg)
idx_seg=idx_seg+1;
t_end=t_seg(idx_seg);
[t_sol,y_sol]=ode15s(@(t,y)f1_v1,[t_start, t_end],y(end,:));
t = [t; t_sol(2 : end)];
y = [y; y_sol(2 : end, :)];
t_start = t_end;
end
for i=1:1:14
if i==1
pb=Pin(idx_seg);
else
pb(i)=pb(i-1)-pdrop(i);
end
end
diffp=diff(pb)*(-1);
pb_s=[pb(1)+pb(2);pb(2)+pb(3);pb(3)+pb(4);pb(4)+pb(5);pb(5)+pb(6);pb(6)+pb(7);pb(7)+pb(8);pb(8)+pb(9); pb(9)+pb(10);pb(10)+pb(11);pb(11)+pb(12);pb(12)+pb(13);pb(13)+pb(14)];
for z=1:1:14
S(z)=(((pb(z)^3+150*pb(z))^(-1) *23400)+1)^(-1);
end
deltaS=diff(S)*(-1);
for j=1:1:13
kin=v;
compl(j)=((3*pi*L(j)*r(j)^3)/(2*Ey*h(j)) )*10^-3; %vessel compliance (ElBouri2018) [ml/mmHg]
Vb(j)=(compl(j)/2)*pb_s(j); %[ml]
q(j)=diffp(j)/R(j);
Vt(j)= chb*H*q(j)*deltaS(j)/M;
end
for m=1:1:13
pt_weight(m)=y_sol(m)*Vt(m);
end
Vttot=Vt.*n;
Vt_sum=sum(Vttot);
ptot=sum(1/Vt_sum * (pt_weight));
end
These are the initial conditions and times I run it with:
cond=[51.2112 ; 63.8766 ; 60.7979 ; 49.0010 ; 35.3767 ; 28.5718 ; 33.7930 ; 31.1300 ; 30.6594 ; 29.9741 ; 30.2541 ; 29.6828 ; 28.9798 ];
[t, y] = f2_v4_21_08_18(cond, [0, 10, 100], [60, 70, 60]);
plot(t, y);
Thanks in advance!

采纳的回答

Torsten
Torsten 2018-8-22
t_start = 0 und t_seg(1) = 0.
In the first call to ODE15S, you consequently try to integrate from t_start=0 to t_end=0 which is not accepted by the integrator.
Best wishes
Torsten.
  2 个评论
gorilla3
gorilla3 2018-8-22
Thanks! I now get the following error:
Index exceeds matrix dimensions.
Error in f2_v4_21_08_18/f1_v1 (line 32)
pt1=y(1); pt2=y(2); pt3=y(3); pt4=y(4); pt5=y(5); pt6=y(6); pt7=y(7); pt8=y(8); pt9=y(9); pt10=y(10); pt11=y(11); pt12=y(12); pt13=y(13);
I don't know why since I have 13 initial conditions and then 13 equations... Could you please clarify this?
Torsten
Torsten 2018-8-22
cond is 13x1, thus y is 13x1 at the start. Consequently y(end,:) is a scalar, not a vector of length 13.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Chemistry 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by