I am writing a code to solve 5 simultaneous equations with 5 unknowns. I am using the function vpasolve, however the code takes 50 minutes to run. Is there a quicker way of solving the equations?
3 次查看(过去 30 天)
显示 更早的评论
syms Qa_1 Q1_1 Q2_1 Q3_1 Q4_1;
eqn1 = (Qa_1 == Q1_1 + Q2_1 + Q3_1 + Q4_1);
eqn2 = (Qa_1^2/60.51 + Q1_1^2/0.8616 == 1.035/Q1_1 + 24.3/Qa_1);
eqn3 = (Qa_1^2/60.51 + Q2_1^2/1.346 == 1.321/Q2_1 + 16.57/Qa_1);
eqn4 = (Qa_1^2/60.51 + Q3_1^2/1.346 == 1.236/Q3_1 + 8.873/Qa_1);
eqn5 = (Qa_1^2/60.51 + Q4_1^2/1.346 == 1.044/Q4_1 + 1.619/Qa_1);
assume (Qa_1, 'real');
assume (Q1_1, 'real');
assume (Q2_1, 'real');
assume (Q3_1, 'real');
assume (Q4_1, 'real');
[sol_Qa_1, sol_Q1_1, sol_Q2_1, sol_Q3_1, sol_Q4_1] = vpasolve([eqn1, eqn2, eqn3, eqn4, eqn5], [Qa_1, Q1_1, Q2_1, Q3_1, Q4_1], [0 Inf; 0 Inf; 0 Inf; 0 Inf; 0 Inf])
0 个评论
采纳的回答
Star Strider
2018-11-11
编辑:Star Strider
2018-11-11
I would do this numerically, using fsolve. It requires a slight re-write of your equations to make them all implicit.
Example —
syms Qa_1 Q1_1 Q2_1 Q3_1 Q4_1 real
eqn1 = (Qa_1 - (Q1_1 + Q2_1 + Q3_1 + Q4_1));
eqn2 = (Qa_1^2/60.51 + Q1_1^2/0.8616 - (1.035/Q1_1 + 24.3/Qa_1));
eqn3 = (Qa_1^2/60.51 + Q2_1^2/1.346 - (1.321/Q2_1 + 16.57/Qa_1));
eqn4 = (Qa_1^2/60.51 + Q3_1^2/1.346 - (1.236/Q3_1 + 8.873/Qa_1));
eqn5 = (Qa_1^2/60.51 + Q4_1^2/1.346 - (1.044/Q4_1 + 1.619/Qa_1));
Eqnsfcn = matlabFunction([eqn1, eqn2, eqn3, eqn4, eqn5], 'Vars',{[Qa_1, Q1_1, Q2_1, Q3_1, Q4_1]});
B0 = rand(1,5)*100;
[B,fval] = fsolve(Eqnsfcn, B0)
This was almost instantaneous. There are likely multiple roots, so experiment with different initial parameter estimates (here ‘B0’).
EDIT — This version makes it easier to track the individual variable names:
Eqnsfcn = matlabFunction([eqn1, eqn2, eqn3, eqn4, eqn5], 'Vars',{Qa_1, Q1_1, Q2_1, Q3_1, Q4_1});
B0 = rand(1,5)*100;
[B,fval] = fsolve(@(b)Eqnsfcn(b(1),b(2),b(3),b(4),b(5)), B0)
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Equation Solving 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!