Is it Necessary to De-Mean my Data before Applying PCA, or does pca(X) do that Automatically?

6 次查看(过去 30 天)
I am aware that a first step in performing PCA for dimensionality reduction is de-meaning the data.
I have performed PCA after de-meaning manually with X=X-mean(X) and compared with plainly applying [COEFF,score,latent,~,explained]=pca(X) on my data.
By inspecting the eigenvalues and the percentage of variability described by each PC on both cases (i.e. latent and explained in the above case), I can see that I get two different results. Is manual de-meaning doing too much in this case?

采纳的回答

the cyclist
the cyclist 2018-11-15
编辑:the cyclist 2018-11-15
MATLAB's pca functions definitely de-means. It should make no meaningful difference if you de-mean ahead.
Are you sure you are de-meaning along the correct dimension? You should only de-mean along dimension 1 of your input.
Are you sure you're getting different output, beyond perhaps some floating-point differences (on the order of 1e-15) smaller than the results?

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Dimensionality Reduction and Feature Extraction 的更多信息

产品


版本

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by