分類器のvalidation accuracyはなぜ毎回異なるのか
8 次查看(过去 30 天)
显示 更早的评论
プログラミング初心者です。
下記リンクを参考にコンパイルしてみたところ、varidation accuracyが毎回コンパイル毎に異なります。
CNNに再現性はないのかなと不安になっておりますので、ご教示いただけますと幸いです。
0 个评论
采纳的回答
Shunichi Kusano
2019-2-7
编辑:Shunichi Kusano
2019-2-7
精度が毎回変わるのは、学習用のデータと検証用のデータが毎回ランダムに変わるためだと思います。
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize'); % ここのことです
用意したサンプルデータが十分でかつ偏りがなければ、毎回大体同じ値になることが期待されます。
通常は学習用のデータと検証用のデータをとっかえひっかえしながら何回か検証して、それらの平均精度で手を打ちます。交差検証法というので勉強してみるといいと思います。
1 个评论
Tohru Kikawada
2019-2-8
>> openExample('nnet/TrainABasicConvolutionalNeuralNetworkForClassificationExample')
>> TrainABasicConvolutionalNeuralNetworkForClassificationExample
>> accuracy
accuracy =
0.9976
>> TrainABasicConvolutionalNeuralNetworkForClassificationExample % 乱数のシードが変わっている
accuracy =
0.9944
>> rng('default'); % 乱数のシードを常に初期値にする
>> TrainABasicConvolutionalNeuralNetworkForClassificationExample
accuracy =
0.9976
>> rng('default'); % 乱数のシードを常に初期値にする
>> TrainABasicConvolutionalNeuralNetworkForClassificationExample
accuracy =
0.9976
>> % 値が一致する
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Deep Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!