spectral coherence between several time series
6 次查看(过去 30 天)
显示 更早的评论
I need some advice regarding the spectral coherence of several signals. Consider the following example:
t = 1:365;
A = 1;
f = 24;
fs = 1/f;
y = A.*sin(2.*pi.*fs.*t);
Data = y + rand(1,length(t));
depth = 1:9;
for i = 1:10;
data(i,:) = Data+rand(1,length(t));
% spectral analysis
[Pxx(i,:),F(i,:)] = periodogram(data(i,:),rectwin(length(data(i,:))),length(data(i,:)),1);
end
figure(1);
subplot(2,1,1);
plot(F(1,:),10.*log10(Pxx(1,:)));
subplot(2,1,2);
pcolor(F(2:end,:),depth,Pxx(2:end,:));shading interp;axis ij
This example shows the spectra for air temperature as subplot(211) and then the spectra for the temperature at each depth in a water column in subplot(212). However, I would like to calculate the coherence in the spectra (if this makes sense), showing that the coherence between air temperature and water temperature decreases with depth in the water column. Can anyone suggest a method for this? Or any advice on this matter.
0 个评论
采纳的回答
Wayne King
2012-7-30
I'll assume you really want to add Gaussian noise and not uniform noise to the data.
y = A.*sin(2*pi*1/T*t);
Data1 = y + randn(1,length(t));
Data2 = y+randn(1,length(t));
[Cxy,W] = mscohere(Data1,Data2,hamming(96),48,96,1);
plot(W,Cxy);
0 个评论
更多回答(1 个)
Wayne King
2012-7-30
You want to use mscohere.m to compute the magnitude squared coherence between two time series
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Parametric Spectral Estimation 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!