applying while loop for solving simultaneous equations

1 次查看(过去 30 天)
I am trying to include a condition that 'tan(alphac)<(1/lam)' in the following code. Here, ''alphac'' is dependent of ''x''. and the value of x is determined at last. I want to write a code such that the value of x is determined by applying the condition.
code:
dbstop if error
clear all
clc
format longEng
syms x y lam
a=[4;0.55];
% The Newton-Raphson iterations starts here
LAM=linspace(0,10,11);
h=4;
q=20;
gma=18.4; nq=2*q/(gma*(h+x));
delta=26;
phi=39;
A=lam*nq/(1+nq);
kv=0;
kh=0;
da1=delta*(pi/180); da2=-delta*(pi/180); pha1=phi*(pi/180); pha2=phi*(pi/180);
dp1=delta*(pi/180); dp2=delta*(pi/180); php1=phi*(pi/180); php2=phi*(pi/180);
psi=atan(kh/(1-kv));
m=pha1+da1;
b=pha1-psi;
c=psi+da1;
alphac=atan((sin(m)*sin(b)+(sin(m)^2*sin(b)^2+sin(m)*cos(m)*sin(b)*cos(b)+A*cos(c)*cos(m)*sin(b))^0.5)/(A*cos(c)+sin(m)*cos(b)))
kg=(tan(alphac-pha1)+(kh/(1-kv)))/(tan(alphac)*(cos(da1)+sin(da1)*tan(alphac-pha1)));
r=1-lam*tan(alphac);
kq=r*kg;
A2=0;
alphac2=atan((sin(m)*sin(b)+(sin(m)^2*sin(b)^2+sin(m)*cos(m)*sin(b)*cos(b)+A2*cos(c)*cos(m)*sin(b))^0.5)/(A2*cos(c)+sin(m)*cos(b)))
kg2=(tan(alphac2-pha1)+(kh/(1-kv)))/(tan(alphac2)*(cos(da1)+sin(da1)*tan(alphac2-pha1)));
pg=0.5*gma*(1-kv)*kg2*(h+x)^2;
A=1;
alphac1=atan((sin(m)*sin(b)+(sin(m)^2*sin(b)^2+sin(m)*cos(m)*sin(b)*cos(b)+A*cos(c)*cos(m)*sin(b))^0.5)/(A*cos(c)+sin(m)*cos(b)))
kg1=(tan(alphac1-pha1)+(kh/(1-kv)))/(tan(alphac1)*(cos(da1)+sin(da1)*tan(alphac1-pha1)));
r1=1-lam*tan(alphac1);
kq1=r1*kg1;
pq=(1-kv)*(q*kq*(h+x)+0.5*q*(kq1-kq)*(h+x));
va2=asin(sin(da2)/sin(pha2))-asin(sin(psi)/sin(pha2))-da2-psi;
ka2=(1/cos(psi))*(cos(da2)*((cos(da2)-sqrt(sin(pha2)^2-sin(da2)^2)))/(cos(psi)+sqrt(sin(pha2)^2-sin(psi)^2)))*exp(-va2*tan(pha2));
vp1=asin(sin(dp1)/sin(php1))+asin(-sin(psi)/sin(php1))+dp1+psi;
kp1=(1/cos(psi))*(cos(dp1)*((cos(dp1)+sqrt(sin(php1)^2-sin(dp1)^2)))/(cos(psi)-sqrt(sin(php1)^2-sin(psi)^2)))*exp(vp1*tan(php1));
vp2=asin(sin(dp2)/sin(php2))+asin(-sin(psi)/sin(php2))+dp2+psi;
kp2=(1/cos(psi))*(cos(dp2)*((cos(dp2)+sqrt(sin(php2)^2-sin(dp2)^2)))/(cos(psi)-sqrt(sin(php2)^2-sin(psi)^2)))*exp(vp2*tan(php2));
sinda1=sin(da1); sindp1=sin(dp1); sinda2=-sin(da2); sindp2=sin(dp2);
cosda1=cos(da1); cosdp1=cos(dp1); cosda2=cos(da2); cosdp2=cos(dp2);
pp1=kp1*gma*0.5*(x^2);
pa2=ka2*gma*(x*y+0.5*(y^2)); pp2=kp2*gma*(y*(h+x)+(0.5*(y^2)));
zp1=x/3;
zp2=((0.5*(h+x)*(y^2))+((y^3)/3))/(((h+x)*y)+(0.5*(y^2)));
za2=((0.5*x*(y^2))+((y^3)/3))/((x*y)+(0.5*(y^2)));
e2=(pp1*cosdp1)+(pa2*cosda2)-(pg*cosda1)-(pp2*cosdp2)-pq;
e3=(pp1*cosdp1*zp1)+(pp2*cosdp2*zp2)-(pg*cosda1*((h+x)/3))-(pa2*cosda2*za2)-pq*(1/3)*(h+x)*((kq+2*kq1)/(kq+kq1));
g=[e2; e3];
J=jacobian([e2, e3], [x, y]);
A=zeros(2,numel(LAM));
for i=1:numel(LAM)
del=1;
indx=0;
lam=0;
while del>1e-6 && tan(alphac)<(1/lam)
gnum = vpa(subs(g,[x,y,lam],[a(1),a(2),LAM(i)]));
Jnum = vpa(subs(J,[x,y,lam],[a(1),a(2),LAM(i)]));
delx = -Jnum\gnum;
a = a + delx;
del = max(abs(gnum));
indx = indx + 1;
end
Z(:,i)=double(a)
end

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Calculus 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by