Coloring The Dots in biPlot Chart

17 次查看(过去 30 天)
I have created biplot as below and I'm looking for a way to distinguish the dots by different colors according to their group name. There are 12 groups and here are mydata and codes.
PC1andPC2.png
categories = ['F1';'F2';'F3';'F4';'F5';'F6';'F7';'F8'];
load('MAT_ALL.mat')
figure(1)
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
load('DataGroup.mat')
clusters = DataGroup(:,20);
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
figure(3)
biplot([coefforth(:,1) coefforth(:,2)],'Scores',[score(:,1) score(:,2)],'Varlabels',categories);

采纳的回答

Adam Danz
Adam Danz 2019-4-25
编辑:Adam Danz 2019-4-25
The biplot() function has an output that lists handles to all objects in the plot. All you need to do is isolate the handles to the scatter points by referencing the handle tags and then assign color based on the category.
If you have any questions, feel free to leave a comment.
% Your code
categories = ['F1';'F2';'F3';'F4';'F5';'F6';'F7';'F8'];
load('MAT_ALL.mat')
% figure(1) (No need for this)
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
load('DataGroup.mat')
clusters = DataGroup(:,20);
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
figure()
% Store handle to biplot
h = biplot([coefforth(:,1) coefforth(:,2)],'Scores',[score(:,1) score(:,2)],'Varlabels',categories);
% Identify each handle
hID = get(h, 'tag');
% Isolate handles to scatter points
hPt = h(strcmp(hID,'obsmarker'));
% Identify cluster groups
grp = findgroups(clusters); %r2015b or later - leave comment if you need an alternative
grp(isnan(grp)) = max(grp(~isnan(grp)))+1;
grpID = 1:max(grp);
% assign colors and legend display name
clrMap = lines(length(unique(grp))); % using 'lines' colormap
for i = 1:max(grp)
set(hPt(grp==i), 'Color', clrMap(i,:), 'DisplayName', sprintf('Cluster %d', grpID(i)))
end
% add legend to identify cluster
[~, unqIdx] = unique(grp);
legend(hPt(unqIdx))
You can select a different color map (I'm using 'lines'). : https://www.mathworks.com/help/matlab/ref/colormap.html#buc3wsn-1-map190425 094457-Figure 1.jpg
  11 个评论
Adam Danz
Adam Danz 2020-11-29
You need to keep track of your random permutation indices and apply the same permutation to the species vector.
randIdx = randperm(size(iris, 1));
irisRandom = iris(randIdx, :);
species = species(randIdx);

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Data Distribution Plots 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by